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(a)

m

(b)

Computer-generated model of a three-dimensional object ob-
tained from 36 digital images: (a) a view of the actual ob-
ject, (b) a view of the model
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ABSTRACT

I.,

A recurring problem in computer vision and related

fields is that of generating computer models of physical ob-

jects. This thesis presents a method for constructing such

models in the form of three-dimensional surface or volume

descriptions. The surface models are composed of curved,

topologically rectangular, parametric patches. The data

required to define these patches are obtained from multiple

photographic images of the object illuminated by a rectangu-

lar pattern of lines. The projection of the pattern on the

surface of the object traces curves which define the

boundaries of the patches. The 3D description of the

patches is reconstructed by photogrammetric techniques from

two or more images of the projected pattern. A calibration

stand, in which the object is placed, permits determination

of the camera geometry directly from image data.__

This method generates 3D surface descriptions of only

those parts of the object that are illuminated by the pro-

jected pattern, and also are visible in at least two images.

*. A complete model of the object is obtained by repeating this

reconstruction process for various arbitrary orientations of

the object until descriptions covering the entire surface

have been obtained. Since each description is defined in

its own 3D object space and 2D parameter space, a sur-

face-matching procedure is developed to register spatially

E~ _iii '1



the surface descriptions in a common object space. This

procedure searches for a 3D rigid transformation of the sur-

face descriptions which minimizes their shape difference.

Once the surface descriptions are in the same object space,

they are also merged into a common parameter space. This

*match-and-merge process is iteratively repeated for pairs of

surface descriptions until a complete model of the object is

assembled.-
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CHAPTER 1

IN TRODUCT ION

-

1.1 Statement of the Problem

A recurring problem in computer vision and related

S -fields has been automatic generation of computer models of

the surfaces of arbitrarily-shaped, physical, three-

- dimensional objects. Generation of such models inherently

requires the acquisition and analysis of 3D surface data.

In this context, acquisition refers to the ability to enter

n automatically numerical data describing 3D surfaces into a

computer data base, and analysis refers to the ability to

organize this data base so that it contains concise and

efficient models of the complete surfaces of 3D objects.

- The models in such a data base are then available to various

application tasks. The objective of the work described here

was to develop computer techniques for the construction and

. •processing of such 3D surface models.

A model of a 3D object, such as of a machine part, can

*be used in a variety of computer tasks. In computer-aided

dsgn (CAD), a clay model of a new part or an existing part

is entered into a computer data base for engineering studies

such as finite-element analysis (FEA). Further modifica-

tions to the shape of the part are made only to the computer

11



model. In computer-aided manufacturing (CAM), the computer

model is used to manufacture the part by a

numerically-controlled machine. In robotics, a mechanical

manipulator with visual or tactile capabilities recognizes,

inspects and assembles the part using the model. In

computer graphics, the model is used for animated display of

3D simulation of these tasks.

In general, the surfaces being considered here may vary

from those of man-made objects such as industrial parts or

broken pottery pieces to those of natural objects such as

earth terrain, and the techniques developed here are

applicable to fields such as automation, archeological

restorations, terrain recognition, and vision for intelli-

gent robots. This work also attempts to bridge the gap

between the approaches to computer modeling of 3D objects in

CAD/CAM (object synthesis), and those in computer vision

(object analysis).

1.2 Outline of the Aproach

The process of constructing computer models of surfaces

of three-dimensional objects, developed in this work, is

divided into three major parts:

(1) generation of a numerical description of the shape

of a surface;

(2) hierarchical structuring of this surface descrip-

2



I.

tion to allow efficient processing; and

(3) matching and merging of partial surface descrip-

tions into a complete surface model of an object.

The surface representation, selected here, uses the bi-

cubic parametric patch as the basic surface element. Adja-

cent patches with positional and derivative continuities

across their boundaries form sheets of composite patches.

Given enough of these composite patches, an arbitrarily-

shaped surface can be represented to an arbitrary precision.

If necessary, however, this representation can be expanded

to higher order bivariate polynomials, or simplified to

*bilinear or planar patches.

The 3D surface data, required to define composite bicu-

bic patches, are obtained by photogrammetric methods from

multiple digital images of surfaces illuminated by a two-

dimensional parameter space. The parameter space contains a

pattern of orthogonal lines, defined on a unit-square grid.

The projected lines of the parameter space trace 3D parame-

tric curves on the measured surface. These curves are the

* boundary curves of the surface patches being computed. The

intersection points of these curves are the control points

-- of the surface patches. By identifying the two-dimensional

projections of these points and curves in two or more im-

ages, they can be reconstructed into the original 3D object

space. The reconstructed 3D control points or boundary

curves are then converted into linear lists of 3D bicubic

:1
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parametric patches.

Having generated a 3D surface description made of

composite patches, a hierarchical control structure that

allows an efficient representation and processing of these

patches is developed. Since the patches are parametrized in

a two-dimensional parameter space where the domain of each

patch is a unit square, a hierarchical structure in the form

of a surface auadtree is utilized. A quadtree of composite

patches is built by recursively merging the four patches

that share a common control point into a new patch at the --

next higher level of the quadtree. Each node in the quad-

tree consists of a description of its patch, a bounding

volume which encloses the patch, and the average normal

vector of the normal vector field of the patches below the

current quadtree node. The bottom level of the quadtree

contains the original patches that were generated from the

parametrized surfaces. The higher levels contain coarser

and coarser approximations to the parametrized surfaces.

This quadtree format of bivariate surface elements allows,

in general, logarithmic rather than linear searching and

sorting time of the individual elements.

The modeling method described up to now generates only

a description of a surface segment that is parametrized by a

projected pattern of lines, and also visible in at least two

images of the surface. Several such segments must be ob-

tained to cover the complete surface of a typical 3D solid

4



object. They are obtained by changing the object's orienta-
S

tion and repeating the surface acquisition process. Each

surface segment is, therefore, defined in its own 3D object

space. The surface segments are obtained, however, in such

a way that they partially overlap to allow their eventual

alignment by matching the common surface sections.

As the last and, actually, the main step in this mod-

eling process, we match the individual surface segments of

an object in a common 3D space, and then also merge them

into a common 2D parametric space. A search procedure was

developed to register spatially two partially overlapping

surface segments at a time. It employes a heuristic-search

algorithm with an evaluation function to compute a rigid 3D

transformation, which minimizes a set of shape-feature

distances between the two surfaces. The shape-feature

distances can be evaluated at (1) patch control points, (2)

points with maximum surface curvature, or (3) points

identified and matched in images of the surfaces. These

feature points are selected at each level of a surface quad-

tree. The search algorithm computes distances from the

feature points on one surface to the other surface by

tracing a ray normal to the first surface at a feature point

and intersecting it with the other surface. From the

distance, angle of intersection, and the curvature of the

Isecond surface at the point of intersection, the algorithm

evaluates the surface match of the current node in the

5



search tree and generates new 3D transformations for the

successor nodes in the search process. The 3D transforma-

tions of the initial nodes of the search tree are generated

by aligning the normal vectors in the top nodes of the two

quadtrees being matched.

After the two surface segments have been transformed

into the same object space, they must be merged into a

common parameter space. Several algorithms, which merge

overlapping surface segments using either transformation of

parameters or projection of parameters, have been developed.

This match-and-merge process is iteratively repeated for all

the 3D surface segments until a complete model of the ob-

ject, in a single 3D object space and a single 2D parameter

space, is generated. A surface model of a solid object can

then be converted into a volume model.

The surface-matching procedure is also generalized to

perform these two tasks:

(1) surface and object recognition - a partial 3D sur-

face description or a complete object model is

matched against a set of complete object models to

determine whether the surface may possibly be a

part of one of the objects; and

(2) surface and obiect seamentation into simple surface

and volume shapes - a 3D surface description or a

3D surface model of a complete object is matched

with surface or volume shape primitives; once a

6



match is obtained, the matched region is segmented

and the process may again be iteratively repeated

in order to decompose a complicated object into a

structure of simple shapes.
U

The following work, although not directly a part of the

modeling process, has also been performed, and is briefly

* presented in this report:

S-" (1) generation of synthetic raster images to allow a

realistic display of the modeled surfaces;

- (2) expansion of the traditional pin-hole camera model

for display of synthetic raster images to a model

of camera' s optical system which includes the

, .notion of focusing, depth of field, and motion

blur caused by a'lens, an aperture opening, and a

finite exposure time, respectively; and

(3) development of the software systems which

implement the modeling process as well as the syn-

thetic image generation and the optical camera

model.

Scene analysis, image processing and computer graphics

are mostly applied sciences. They show that something is

-- possible by doing it rather than by formally proving that it

can be done. The work described here is presented in this

spirit by ommiting formal assumptions, proofs, lemmas or

anything else that could just make it look better than it

actually is. It contains descriptions of techniques, algo-

a, 7 



rithms and data structures and reports on how well they do

or do not work.

This report has the following structure: the three

steps of the modeling process are presented in the next

three chapters; each of these chapters is illustrated with

several examples; then a chapter is devoted to the hardware

employed and the software developed for the modeling proc-

ess. Finally, a chapter with comprehensive results of the

modeling process follows.

1.3 Literature Survey

There is an extensive amount of recent literature that

is pertinent to this project in the areas of image proc-

essing, scene analysis, robotics, artificial intelligence

and computer graphics. The following brief survey is

divided into three sections which correspond to the three

major steps (surface acquisition, representation, and match-

ing) in building object models as described in this work.
b

1.3.1 Surface Acguisition

There are a number of techniques for automatic, non-

contact surface digitization based on (1) light reflection

from controlled light sources, (2) time-of-flight measure-

ments, and (3) stereometric correlations. Illumination of a

8
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3D object by a line pattern was first reported in the image|S
processing literature by Will and Pennington [73,74], who

used it to locate planar faces of polyhedral objects. A

normal vector to a planar face was computed from a 2D

Fourier transform of a single image illuminated by a grating

of parallel lines. Idesawa et al [38,39] computed 3D sur-

face shape from Moire fringe patterns. These patterns are

formed when an object illuminated by a grating is observed

through another grating. Scene analysis using 3D data ob-

tained with a range finder can be found in several papers by

Agin (1,2], Oshima and Shirai (51], and Tsukiama (71].

Typically, a range finder computes 3D depth information from

a single line of l.ight projected on a scene. Horn (35] ob-

tained surface geometry from single images by analyzing il-

lumination, reflectance and surface shading of a scene.

Posdamer and Altschuler (53] proposed a laser shutter/space

encoding system capable of digitizing several thousand 3D

surface points in real time.

Reconstruction of objects and surfaces from multiple

views has been performed by several authors. Rabinowitz

[61] reconstructed vertices and edges of polyhedral objects,

* Shapira (68] matched regions of objects bounded by quadric

surfaces, Baker (6] constructed models of objects from mul-

tiple 2D silhouettes. England (25] interactively fitted 3D

surface description on two stereo views of an object. Burr

(13] matched two stereo images. Fuchs et al [30] recon-
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structed objects from series of planar contours. A survey

by Bajcsy [5) lists other current scene-analysis methods for

acquisition of 3D data using monocular and binocular depth

cues.

1.3.2 Surface Representation

Parametric curved-surface representation was developed

by Coons (20]. The bicubic parametric patch has been

extensively used in computer-aided design [7,16,261 and in

computer graphics [15,40]. Other surface representations

using planar and quadric surfaces were studied by Baumgard

[10] and Levin [41], respectively. Barr [8] extended the

quadric representations into a family of more powerful

shapes. Volumetric representation of objects was used by

Agin and Binford [2] (generalized cylinders), O'Rourke and

Badler [50] (spheres), and Meagher [44] (octal trees of

cubes). Hierarchical surface representation using bounding

volumes was proposed by Clark [18] to improve hidden-surface

algorithms for complex 3D scenes, and implemented by Whitted

[72] and Rubin and Whitted [64]. Newell [47], Grossman

[33], and Marshall et al [45] utilize procedural representa-

tions of 3D objects. Synthetic object modeling for

programmed assembly by mechanical manipulators can be found

in works by Grossmann and Taylor [32], and Lozano-Perez and

Winston (42]. A survey of existing systems for geometric

10
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modeling in computer-aided design is presented by Baer et al

[4]. Badler and Bajcsy [3] survey methods of representing

3D objects for computer graphics and computer vision.

1.3.3 Surface Matching

Most of the work in surface matching and shape analysis

has been primarily done by comparison of 2D shapes or 3D

shapes projected into 2D images. For example, Davis [21]

used relaxation labeling of local features for 2D shape

matching. Burr (14] proposed a dynamic elastic model for

image as well as line-drawing matching.

Relevant research in 3D matching was done by Baker [6]

who compared 3D shapes made of piece-wise surface

primitives. Barrow et al (9] presented a technique of

matching a 3D description of a scene and its 2D images.

Horn and Bachman (36] aligned a synthetically shaded image

* of a 3D terrain model with an actual image of the terrain.

Burr (13] matched reconstructed 3D edges of objects with

stored wire frame models utilizing 3D features and geome-

trical constraints. Shapiro et al 169] matched structured

descriptions of objects.

1.4 Summary of Definitions

The modeling process described here utilizes three co-

11
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ordinate systems and four mappings between these systems.

We need to define these systems and mappings in detail

before proceeding further:

O(x,y,z,w)k is a homogeneous 3D object coordinate sys-

er which defines object space k. All 3D representations of

surface elements are specified in an object coordinate sys-

tem. An object being modeled is positioned in object coor-

dinate spaces k = 1, 2, .... , K. Notation O(x,y,z,w)j,k

means that object space k is parametrized by parameter space
L.

P(u,v,w) is a homogeneous 2D parameter coordinate sys-

tem which defines parameter space J. A set of orthogonal

lines on a unit-square grid parametrizes a 3D surface in an

object space. An object being modeled is parametrized by

parameter coordinate systems . = 1,2, .... , J. There is

always at least 9-m parameter coordinate system J for every

object coordinate system k. Notation P(u,v,w)j,k means that

parameter space _j parametrizes object space k.

Q(r,s,w)i is a homogeneous 2D image coordinate system

which defines image space i. An object being modeled is

observed in image coordinate systems = 1, 2, .... , I.

There are always at least two image coordinate systems i and

i' for every object coordinate system k and parameter coor-

dinate system .. Notation Q(r,s,w)ijk means that object

space Jk is parametrized by parameter space . and observed in

image space i.

12



T{Pj->Ok} is a mapping from a 2D parameter space Pj to

a 3D object space Ok . This mapping takes places (via a pro-

jector) when 2D lines of a parameter space are projected on

a 3D object space.

T{Ok-Qi} is a mapping from a 3D object space Ok to a

2D image space Qi. This mapping takes place (via a camera)

when a 2D projection of a parametrized surface is recorded

in a 2D image coordinate system.

T{Ok-->Ok,} is a mapping from object space Ok to object

space 0k,. This mapping is computed by the matching proce-

dure to transform two 3D surface descriptions into a common

object space.

T{P -->Pi,} is a mapping from parameter space Pj to pa-

rameter space Pj,. This mapping is computed by the merge

procedure to transform a 3D surface, parametrized in two

different parameter spaces, into a common parameter space.

• <Additionally, the following terms are used throughout

* this report:

A Parametrizing grid is a set of orthogonal 2D isopa-

rametric lines used to parametrize a 3D surface.

An isoparametric line network is a 2D image projection

4 of a parametrizing grid projected on a 3D surface. 0

A surface element is a 3D surface representation by a

planar face, a sphere, a quadric surface, or a bicubic

patch. I

A bounding surface is a surface element used solely as

13



a bound of other surface element or elements.

A bounding volume is a set of one or more surface ele-

ments which completely enclose a 3D space. One or more sur-

face elements or other bounding volumes are completely

circumscribed by a bounding volume. Typical bounding

volumes are a sphere, an ellipsoid or a parallelepiped.

A surface Suadtree is a hierarchical surface structure

with surface representation parametrized by two orthogonal

parameters which are defined in a 2D plane. A node of the

tree has up to four successors which contain descriptions of -

the current surface element subdivided into four more

detailed elements.

A sheet of composite patches is a set of contiguous

patches with adjacent patches having at least first-

derivative continuity (C1 ) across their boundaries. All

patches in a sheet are parametrized by the same parameter .,

coordinate system. A sheet of patches is stored in a single

surface quadtree. Patches in different sheets of an object

have at most positional continuity (C 0 ).

A surface segment is the part of a surface that is

described in one object coordinate system and one parameter

coordinate system.

A surface model of a solid object is a union of sheets

of composite patches which define the surface of the object.

A volume model of a solid object is a union of rectan-

gular parallelepipeds which define the volume of the object.

14



CHAPTER 2

GENERATION OF 3D SURFACE DESCRIPTIONS

This chapter describes a method for making automatic,

non-contact measurements of the surfaces of physical, rigid,

arbitrarily-shaped 3D objects 154,28,56]. Surface informa-
O

tion is obtained by photogrammetric and image-processing

techniques from multiple images of the measured surfaces il-

luminated by a controlled light source. The method, as used

here, generates surface data that are used in modeling the

surfaces with composite bicubic patches. However, it can

also be adapted to surface modeling with surface elements

ranging from planar triangles to high-order polynomials.

Surface representation by the bicubic parametric patch,

as defined in detail in Appendix A, has been chosen because

of its widespread applications in the fields where computer-

generated models of 3D objects are extensively used, such as

CAD/CAM and computer graphics. The format of the patch

employed here can be defined either by a set of 3D control

points or by a set of 3D boundary curves. The photo-

grammetric reconstruction method allows us to compute either

the control points or the boundary curves from multiple im-

ages of the surface-patch area.

The first three sections of this chapter contain the

background mathematics necessary for the reconstruction

15
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process. The fourth section then describes the actual

computer methods implementing this process.

2.1 2D to 3D Parameter Mapping

To model an existing 3D surface with parametric

patches, the surface is parametrized with orthogonal isopa-

rametric lines. T{Pj-->Ok } maps a 2D parameter homogeneous

coordinate system P(u,v,w) into a 3D object homogeneous co-

ordinate system O(x,y,z,w)k (Figure 2.11:

(2.1)

i- ix u tll t12 t13 u
y = T{PJ'-Ok} v t21  t22  t2 3  v

t31  t32  t33  J

-k -t41  t42  t4 3 -

The parametric information mapped on the surfaces in

the object space can be described by a set of orthogonal

lines and their intersection points. There are (M+I) x

(1N+1) isoparametric lines; those with u as the parameter

and y constant are labeled:

T OM(u), o.., Tn(u), ... , 1N(U),

and those with . as the parameter and u constant are

labeled:

TOMv , "''' re(v)' ... , l (v).

The intersection point of two orthogonal lines In(u) and

16
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Figure 2.1 Object and parameter coordinate systems and
mapping T{P -40
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'Tm Cv) is a patch control point Timrn(u,v~w) [Figure A.l(b)].

This point is mapped on surface point urn n(X#,YPZW)k and

then projected into image point hmon(r,s,w)i. It becomes a

control point of patch mnu)@ The line segment from

Point %l,n(ulvuw) to point %imn+i(u~viw) is Trmn(v). It is
mapped into a 3D Patch boundary cgu cm (v)k ~)yv

z(v) w(V) Ikand then projected into a 2D image curve

c (v). I r(v) s(v) w(v) 1i. The other line segment fromm,n 1

point Tim n(ujv,w) to point hmin~~vw is similarly label-

ed. The mappings of these two line segments become boundary

curves of patch gm,n(ulv). This defines the surface infor-

mation required to construct an array (a sheet) of M x Ni pa-

rametric patches.

2.2 3D to 2D Image Mapping

Transformation T{Ok-4>Q1 } maps a 3D object homogeneous

coordinate system O(x~y~zrw)~ to a 2D image homogeneous co-

ordinate system Q(r,s,w)i [Figure 2.2]:

(2.2)

Fwxt1l t 12 t13 t4x
w T(Ok-*Qi y Lt2l t22 1 2

L_ _Ji t3l t32  t33  t 3 4 J

k -k

The transformation T{Ok---)Qi) consists of translations
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Fiue22 Object and image coordinate systems and map-I
Fiue22 pi ngs T fOk-4Qi ) and T{fOk- 4\Qi .1
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and rotations of the camera in O(x,y,z,w)k, perspective pro-

jection, and conversion into the digitized image coordinate

system Q(r,s,w)i . Its detailed composition has been

previously discussed in [54].

2.3 2D to 3D Surface Reconstruction

To map surface information from an image plane

Q(r,s,w)i back into the 3D space O(x,y,z,w) k we have to find

an inverse mapping to that given in equation (2.2). For the

2D projection I(r,s,w)i in Q(r,s,w)i of a 3D point

h(x,y,z,w) k in O(x,y,zlw) k and mapping T{Ok-->Qil from the 3D

object coordinate system to the 2D image coordinate system,

we can rewrite equation (2.2) into a system of two linear

equations with three unknowns:

(2.3)

rit31-tll rit 32-t1 2  rit 33-t13  rit 34-t14 x_

sit 31-t21  sit 32-t22  sit33-t23 sit34-t24 Y

z

-k

The solution to this system of equations produces only

the equation of the 3D line ]E(r,s,w) i hi(x,y,z,w) k . To

compute the coordinates of the point ]i(x,y,z,w) k we need an

additional projection ]i(r,s,w) i, in Q(r,s,w) i , and mapping

T{Ok--Qi,} as shown in Figure 2.2. With two projections we

20



obtain four equations with three unknowns and the

coordinates of point li(x,y,z,l)k can be solved. The

least-square error solution of the system in equation (2.3)

for I projections was previously described in [54]. The
III

reconstruction of surface points, presented in this section,

can be generalized to reconstruction of surface curves.

Appendix B contains an analogous method for the
p

reconstruction of a 3D parametric cubic curve from its

multiple projections in 2D images.

The reconstruction error of a point T(x,y,z,l)k is

evaluated from equation (2.2) by projecting the

reconstructed point back into each image i from which it was

obtained, and computing the 2D image distance between this

projection and the originally measured point ]i(ri,si,l) i .

The total error is then the sum of errors in the images:

(2.4)

tllx 1 2 ytl 3 ~tl 4 ) 2 + t 2 1 x+t 2 2 Y+t 2 3 z+t 2 4 2°d= ri  +S

i=1 t 3 1 x+t 3 2 y+t 3 3 z+t 3 4  t 3 1 x+t 3 2 y+t 3 3 z+t 3 4
t -1

In the above equation (2.4) the coefficients t belong

to the camera transformation matrix T{Ok--4 Qi}. Note also

that the error d is given in pixel units of the image

coordinate systems.

The twelve coefficients of the camera transformation

matrix T{Ok-*Qi) in equation (2.3) are computed for each
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age i by a camera calibration method [70]. Equation (2.2)

may be rewritten as two simultaneous linear equations by

eliminating y:

(2.5)

x y z 1 0 0 0 0 -xr -yr -zr -r tll =

0 0 0 0 x y z 1 -xs -ys -zs -s] t12

t3 3

t 3 4  W

where x, ., z, are the coordinates of a point Ii(x,y,z,l)k in

O(x,y,zw)k and r, g are the coordinates of its image

h(r,s,l) i in Q(r,s,w)i . There are twelve unknown t's in the .,

two equations of (2.5). If we know six points in

O(x,yFzIw) k and their corresponding images in Q(r,s,w)i, we

can create twelve simultaneous equations (two for each 5

point) and solve for the unknown coefficients. In order to

solve such a system of linear equations, it has to be made

non-homogeneous be letting, for example, t 3 4 = 1. This is

allowed since the homogeneous coordinate systems that we are

using have an arbitrary scale that is set to 1.

In general, for six or more calibration points the

least-squares error method is again used to solve a system
of eleven non-homogeneous equations (with t 3 4  = 1) [54].

Once the coefficients of T{Ok-->Qil are computed, the error

22
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of each calibration point may be checked by evaluating

equation (2.2) for h(x,y,z,l) k and comparing the computed

point h(r,s,l) i with the measured calibration point

i(r,s,l) i . Calibration points with large errors may then be

disregarded and the procedure repeated for a better estimate

of T{Ok--*Qil.

2.4 Photogrammetric Reconstruction

In the approach, taken here, the surface to be

digitized is illuminated by the parametrizing pattern

described in Section 2.1. The pattern is focused on the 3D

surface and its shadow traces 3D isoparametric curves there.

Using image processing and photogrammetric techniques, a 3D

description of the pattern projected on the surface can be

obtained. Therefore, the 3D surface being measured is

illuminated by a 2D pattern of parametric lines P(u,v,w)j

with a projector located at i (Ficre 2.1]. The illuminated

parts of the surface are photographed from at least two

locations i and ' by a camera onto 2D image planes

Q(r,s,w) i and Q(r,s,w)i,, respectively [Fi3ure 2.2J. The 3D

object coordinate system O(x,y,z,w)k is defined by a set of

camera calibration marks placed in a camera calibration

stand. The measured surface is within this stand.

This arrangement limits us to surfaces that can be pho- .

tographed under the conditions imposed by this method. That

D2



is, the surfaces are photographed in a camera calibration

stand; they can not be transparent, have high specular re-

flection, or be totally black. This method also requires a

large amount of computations, and image digitization at a

high resolution to obtain precise surface measurements. It

is mainly intended for surface measurements of objects w"ose

models will later be used in various applications, rather

than for real-time surface acquisition and processing.

The following is an outline (specified in a home-grown

variation of the "Algol-like notation") of the recon-

struction algorithms, once all Ij,k digitized images for a

single parameter coordinate system i and a single object co-

ordinate system k have been obtained:

(2.6)

p extract(Ij,k);
begin
fr i := 1 Z=i_ 1 un il Ij,k -d

begin
extract coordinates of camera calibration marks;
match them with their coordinates in O(x,yz,w)k;
compute T{Ok-->Q i l;
extract the pro3ected line pattern;

return;
end;

and then
(2.7)

procedure reconstruct(Ij,k);

match extracted patterns for images 1 to I.,
reconstruct matched surface data for imagea' to Ij,k;
return
enW;

Images of surfaces are taken by a camera on monochrome
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film and digitized. There are two types of data that need

to be extracted from a digitized image: the projected line

patterns and the illuminated calibration marks. Both data

types can be stored in binary images (each pixel is either 0

or 1), where the projected pattern is a network of black

lines on a white surface with black background (Figure

2.3(a)], and the calibration marks are white marks on black

background [Figure 2.3(b)].

The projector illuminating the measured surface can be

considered a single point-light source. The light reflec-

tion from the surface is only diffuse reflection; any

potential specular reflection can be supressed by the use of

polarizing filters. Therefore the light intensity in an im-

age can be approximately modeled by Lambert's law:

intensity = kd (N-H) (2.8)

[] where

kd = diffuse reflection coefficient

N = surface normal vector

S= light source vector

intensity = final image intensity

It is apparent from equation (2.8) that image intensity

and, therefore, also the contrast of the projected lines

decrease as the illuminated surface turns away from the pro-

£ jector. Simultaneously, the spacing of the lines projected

into the image decreases as does their width. A frequency-
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domain filter, or edge detection are used to restore

contrast to these parts of an image.

Each image is digitized to intensity resolution of 8 or

16 bits per pixel. The digital image is then filtered to
K

remove noise and to enhance contrast before being

thresholded into a binary image. Image noise is removed by

spatial convolution with a 3 x 3 or 5 x 5 pixel operator.

Contrast enhancement of the line pattern is performed by (a)

frequency-domain filter, (b) local histogram modifications

in small image windows, or (c) edge-detecting heuristic

search [43] which is guided by the shape of the projected

- lines and the tendency of adjacent lines to follow similar

shape. The frequency-domain filter is a band-emphasis and

low-pass filter (34,60] designed to enhance the frequencies

of the projected grid lines, and to remove high-frequency

noise.

A program computes the coordinates of all the visible

corners of camera calibration marks by taking these steps on

a binary image:

(2.9)

- (1) read a window of the binary image;

(2) make a fast check for a possible presence of a

calibration mark in the window, if not present go

to (1); (this fast check is made by parsing pixels

in the L and s directions and looking for pixel

strings of types 0mln, im0 n, or imonlP;
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(3) compute edge pixels of a calibration mark with an

8-point Laplacian operator;

(4) locate straight lines in edge pixels using Hough

transform (23];

(5) compute parametric equations of lines fitted into

these edge-lines;

(6) compute intersections of the lines; these 2D in-

tersection points, h(r,s)i, are the corners of a

camera calibration mark, go to (1).

Next, each extracted corner (r,s) is matched with its

pre-stored coordinates in O(x,y,z,w)k and a five-tuplet

(r,s;x,y,z) of the coordinates is formed. The camera trans-

formation matrix T{Ok-->Qi } is then computed from six or more

of these five-tuplets by solving the system of equations

(2.5). Since the calibration stand is normally photographed

by the camera only from one octant of the object coordinate

space Ok , a simple relational graph (24,751 has been devel-

oped to perform the matching of the projected calibration

points with their 3D coordinates. The graph contains 2D

spatial relationships of the calibration marks when viewed

by the camera from the given octant.

The networks of the projected parametric lines are ex-

tracted from a binary image by a program which may execute

concurrently on the same image with the program extracting

the camera calibration marks. This program creates a
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network of lines by performing these steps:

(2.10)

(1) apply a line-thinning operator to the image; this

"- operator, similar to those given in [52,76], uses a

transition table to thin iteratively lines in a

binary image while preserving line connectivity,

i.e., a line pixel has only 1 or 2 adjacent pixels

while a node pixel has 3 or 4 adjacent pixels in an

8-pixel neighborhood;

(2) remove all pixels which do not belong to lines or

nodes, i.e., pixels with 0 or more than 4 adjacent

pixels (background, calibration marks, shadows, and

* isurfaces not illuminated);

(3) convert the line pixels, still in raster format,

into parametricly defined straight line segments or

* cubic curves; this is the scan-line-to-vector

conversion where all adjacent line pixels,

connecting two node pixels, are collected into

clusters of ]i(r,s) i points and either a 2D straight

line segment or a cubic curve is fitted into them,

the two end points of the line segment or the curve
are also computed.

The above three steps are performed in one pass over a

4 binary image while no more than 10 to 15 scan lines have to

be accessible at the same time. After the image has been
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processed, node intersections are computed. For the pattern

of orthogonal parametric lines used here, there are

typically four line segments or curves intersecting at a

node. The coordinates of a node are computed by minimizing

the sum of distances to the lines or curves from the inter-

section point. A data structure is created for the line

network where each node description contains the h(r,s) co-

ordinates of the node, pointers to all the adjacent nodes

and pointers to coefficients of curves or lines connecting

adjacent nodes. Pointers of each node to its neigboring

nodes are sorted in such a way that each isoparametric line

forms a two-way linked list of its segments. Therefore the

topology of the line network is implicitely embedded in the

data structure and one may traverse the line network in any

path. This capability is used during the reconstruction of

the projected lines.

It should be emphasized that while computing the 2D

projections of the surface curves, there is additional in-

formation, not needed for the reconstruction of individual

3D points, that has to be extracted from each image. When

constructing cubic curves with the method of Appendix B, the

slope of the projected curve at each end point must also be

evaluated.

Finally, a matching algorithm which reconstructs the

multiple 2D projections of the isoparametric line networks

in the 3D object coordinate system is presented. This algo-
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rithm matches corresponding projections of points and curves

[] which are then numerically reconstructed by equation (2.3)

for points, and the method of Appendix B for curves. This

matching is primarily based on the topology of the projected

line networks. The matching proceeds in two steps: (1) an

initial estimate of the match is made, and (2) the correct

match is found by a gradient search.

In the first part, the algorithm locates a cycle of

four adjacent nodes in one image and attempts to find pro-

jections of these nodes in the other image. The projections 4

must also form a cycle of adjacent nodes. The projection of

a node is determined when the 3D line from the center of

projection to the node in the first image is projected into

the second image and the node nearest to it is found. This

matches node Em,n(rs)i with node hm,n(rs)i, and similarly

the other three nodes [Figure 2.4(a)]. Note that the four*" nodes in a cycle provide the minimum surface information

needed for a single patch element. This initial match

succeeds if the reconstruction error, evaluated by equation

(2.4), of each of the four nodes is less than a specified

maximum. The acceptable maximum error depends on the reso-

lution of the digitized images. If it fails then another

cycle is located and this step is repeated; if all the

cycles are exhausted without a success, then the two pro-

jections do not correspond to each other (either they con-

tain different surfaces, or they are parametrized by differ-
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Figure 2.4 Matching of projected line networks: (a) ini- -
tial match, (b) final search
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other (either they contain different surfaces, or they are

parametrized by different parameter systems). Although we

could match only a single node in this initial step, a cycle

of four nodes substantially improves the match and,

* therefore, shortens the search in the second step. O

In the second part, an evaluation function is used to

search for the correct match of the two line networks.

First, the current match of nodes lm,n(r,s)i and hm,n(r,s)i ,

is iteratively propagated over the line network in the

directions of the parametric lines until all matchable nodes

are reconstructed. Then the evaluation function which

minimizes the sum of the node reconstruction errors and

maximizes the number of reconstructed nodes is computed by:

nL
e(m,n;m,n) = wEd p + wL/L (2.11)

p=l

where

dp reconstruction error of node 2

wd = weight of Zdp

L = number of reconstructed nodes

wL = weight of l/L

e = value of evaluation function for match of node

Tm,n(r,s)i with node hmn(r,s)i,.

The first line network is then moved by one node in the

four directions of the network with respect to the second

network and four new matches of node m,n(r,s)i with nodes
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s) i , are generated [Figure 2.4(b)]. The evaluation func-

tions e(m,n;m+l,n), e(m,n;m-l,n), e(m,n;m,n+l), and e(m,n;

m,n-1) of each match are computed, and the correct match is

found when the value of the function for a match is smaller

than the value at any of its neighbors, that is:

e(m,n;m,n) < minEe(mn;m+ln),e(mn;m-l,n), (2.12)

e(mn;m,n+l),e(m,n;m,n-l)]

If the inequality (2.12) is not satisfied by the

current match then the match with the smallest value of e

becomes the current match and this search is repeated until

it converges on the solution and the inequality (2.12)
-4

becomes valid. The final match is then used to create a

data structure which contains topological description of the

reconstructed parts of the line network again defined as

two-way linked lists of the orthogonal line segments and the

reconstructed 3D points and curves. This data structure can

be converted into a linear list of surface data needed to

compute individual bicubic patches.

If the images contain two or more disconnected line

networks, each network has to be processed by this algorithm

separately. For more than two projections, this process is

carried out for the first two projections as described and

then each additional projection is matched, one at a time,

with the already reconstructed network.
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In many applications of surface models, specially mod-

els of closed (solid) objects, it is pertinent to

distinguish between the "outside" and the "inside" sides of

a surface. The "outside of a surface or object is defined

as the side facing the cameras during the surface recon-

struction. A surface-normal vector, pointing to the

"outside" direction, is attached to each reconstructed node.

The vector is, therefore, forced to be oriented so that:

N Hi > 0 (2.13)

where

N = surface-normal vector,

Hi = location of center of projection of image i.

The center of projection of image i is computed from the

system of equations (2.3) using the camera transformation

matrix T{Ok--Qi } and two linearly independent points in then k-i>

image plane. Each equation of (2.3) defines a 3D plane;

their intersection is a 3D line through the center of pro-

jection. The intersection of two such lines is the location

of the center of projection, denoted Hi . If only two images

are used to generate the 3D data, then either center of pro-

jection can be used in (2.13) to orient the normal vector

since each point must have been visible in both images

(otherwise it could not have been reconstructed). If more

than two images are used, then each point needs a pointer to

the camera transformation matrix of one of the images from
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which it was reconstructed. The location of the center of

projection of this image is used in (2.13).

The surface information, computed at each reconstructed

node, consists of the following items:

T(x,y,z) positional coordinates (2.14)

hu(xiY'z) surface tangent in u

hv(xyz) surface tangent in v

iu(x,y,z) surface cross-derivative (twist)

R(x,y,z) surface-normal vector

pointer, pointer to adjacent node in +u direction

pointer 2  pointer to adjacent node in +v direction

pointer 3  pointer to adjacent node in -u direction

pointer 4  pointer to adjacent node in -v direction

The above information is used to convert the reconstructed

nodes and curves into surface patches as outlined in

Appendix A.

2.5 Illustrations -'1
The surface reconstruction method is illustrated here

by the following example cf a multiply-curved surface.

There are two images, in Q(r,s,w)l 1 l 1 and Q(r,s,w)2 ,1,1 im-

age coordinate systems, of the parametrized surface as shown

in Figure 2.5. The images are displayed at resolution of

1100 x 1400 binary pixels. The orthogonal parametric lines

extracted from the two images are drawn, together with a
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V.Figure 2.5 Two digitized images of a [:ariw--,tiycd test

Ksurface: (a) Q(r,s,w) 1 11,, (b) Qrsw:,~
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model of the camera calibration marks and the object coorci-

nate system O(x,y,z,w) I , in Figure 2.6. The image recon-

struction mappings T{OI--.Q I} and T{OI-->Q 2 I are also printed

in this figure under their corresponding images. The recon- p

structed surface, named 'SURFACE.3', is shown in four ortho-

graphic projections in Figure 2.7. The surface is

represented by a network of 3D polygons. There are four

different projections of the surface shown in Figure 2.8.

Here, the surface is represented by a sheet of composite 3D

bicubic patches with C1 continuity. Shaded synthetic images

of the sheet of patches are shown in Figure 2.9.

2.6 Summary

A technique for reconstruction of 3D surface informa-

tion from multiple images was presented in this chapter. It

is based on correlation of projected patterns of light on

the surfaces being measured. Triangulation is used to

compute 3D surface data from 2D data obtained in two or more

images. Image transformations are computed from a number of

calibration marks whose locations in the 3D space are known,

and whose locations in an image are measured. Arbitrary

camera positions and orientations are therefore permitted,

however, limitations of stereo correlation still persist:

4 reconstruction error increases with narrow separation angle,

reconstruction data decrease with wide separation angle.
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Figure 2.7 Four views of the reconstructed surface de-
scribed by a 3D network of isoparametric lines
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Figure 2.8 Four views of the reconstructed surface de-

scribed by a sheet of bicubic patches
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This method allows additional images to be used to improve
*I

accuracy of the measured surfaces and to increase the

measured surface area. However, all surface measurements in

this work were obtained from pairs of images sequentially

taken by the same camera.

-0
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CHAPTER 3

HIERARCHICAL SURFACE REPRESENTATIONS

Computer surface modeling refers to the ability to

analyze a three-dimensional surface and represent it by a

composite description based on many independent features

such a6 size, shape, structure, texture, and light reflec-

tive and transmissive characteristics. The creation of such

a computer model is necessary for any computer vision or

scene analysis system. This chapter describes a surface and

volume representation system which was developed to support

the modeling process of this work.

The representation of 3D surfaces in a data base is hi-

erarchical; that is, it consists of a control structure

which in the most general case is a directed, acyclic graph.

The nodes of the graph contain descriptions of the surface

shapes and their relations, and the arcs represent 3D rigid

transformations in the object coordinate system. There are

three types of nodes in such a graph: (1) surface elements

which contain the actual surface geometry, (2) bounding vol-

umes which partitions the 3D object space to facilitate ef-

ficient searching and sorting, and (3) surface relationships

which contain logical connections among surface and volume

sections. Although all three types of nodes are applicable t i

to geometrical modeling found in CAD/CAM and computer graph-
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ics, the last type is also useful for object matching and

I mrecognition in computer vision applications. The system de-

scribed here also permits volume (or solid) modeling as well

as surface modeling. Solid primitives are designed from

surface elements which enclose 3D volumes. Complicated sol-

id objects are constructed by combining the solid primitives

- .with set operators. This allows the system to be also used

in constructive solid Qeometrv (CSG) applications [4,62].

The processing algorithms which operate on this surface

* .representation are based on the method of ray-tracing. This

method requires the ability to traverse the data structure

and compute intersections between a 3D line (a ray) and 3D

surface elements. It is an effective, versatile, but rather

brute-force method which has been used for the generation of

shaded images [72,64,63] and line drawings (63], computa-

tions of mass property [62,63], and conversions of represen-

• - tation (62,63]. In the next chapter we develop algorithms

for (a) matching of 3D surface descriptions which use ray-

tracing to evaluate a measure of shape similarity between

two surfaces, and (b) merging of overlapping surface de-

scriptions which use ray-tracing to compute parameter trans-

formation, parameter projection, and conversion of represen-

tation.

In addition to using the surface information provided

by the photogrammetric method described in the previous

chapter, surface data obtained from other sources or syn-
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thetically designed may also be entered into this surface

data base. The section of Chapter 3 which most directly

applies to the modeling process is the conversion of the

surface information generated by the reconstruction method

into surface quadtrees which can then be passed to the

various processing algorithms. Chapter 3 also reviews other

forms of surface elements, in addition to parametric

patches, that are used in the modeling system described

here, and basic geometric operations on these elements

required by the processing algorithms.

3.1 Graph and Tree Representations

The hierarchical surface representations are stored in

directed, acyclic graphs. A directed graph is generally de-

fined to be a finite, non-empty set of nodes together with a

set of directed arcs joining pairs of distinct initial and

final nodes. An acyclic graph does not contain any cycles

of arcs. It has one node of in-degree 0 which is referred

to as the root node. The final nodes of arcs leaving a node

are called its successors; similarly, the initial nodes of

arcs coming to a node are called its predecessors. A tree

is an acyclic, directed graph in which all nodes except the

root node have in-degree of exactly 1. In a hierarchical

graph or tree, a node contains more detailed information

than any of its predecessors. In an ordered graph or tree,
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the successors of a node are listed in a determined order.

The data structure of the surface representation, as

shown in Figures 3.1 and 3.2, consists of the graph and a

number of tables which provide additional information about

each node or arc. The graph contains three types of nodes,

called the R-nodes, B-nodes, and E-nodes, which describe

surface relations, bounding volumes, and surface elements,

respectively. Although the nodes in the graph are independ-

ent of the surface representation, there is a set of sepa-

rate tables for each type of node. The actual information

about surface relations, bounding volumes, and surface ele-

ments is stored in sets of b , B-tables, and E-tables,

S respectively. Detailed descriptions of the contents of

these tables are given in the next three sections of this

chapter. The 3D transformations represented by the arcs of

* the graph are stored in the T. A null pointer from an

arc implies identity transformation. A node entry in the

graph itself contains the information shown in Figure 3.2,

and is stored in a variable-length block in the G-table.

This information consists of (1) the type of the node, (2)

the number of its table and a pointer to an entry in it, (3)

three flags which determine whether the successors of the

node represent a closed volume or an open surface, whether

they are to be treated as actual surfaces and volumes or as

invisible, auxiliary surfaces and volumes, and whether they

contain a complete object or a collection of surfaces and
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G-table 
pi(directed ac' clic (graph)

T-table A-table E-table

(transfor- (surface (icienfificrs)
ma-tions) attributes)

Figure 3.1 Diagrami of hierarchical surface representation
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|0

node type (B, E, or R)

table number

pointer to entry in a table

"closed volume or open surface" flag
L

'actual or auxiliary surface" flag
"complete object" flag

number of successors

pointer to first successor (G-table)

* ipointer to its transformation (T-table)

pointer to second successor (G-table)

pointer to its transformation (T-table)

i--:"" Ipointer to last successor (G-table)

i i pointer to its transformation (T-table)

- Figure 3.2 Contents of a graph node
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volumes, (4) the number of successors, and (5) an ordered

list of pointers to the successors, each of which has an

associated pointer to a 3D transformation. Note that each

bounding volume or surface element may potentially be de-

fined in its own local 3D coordinate system while the entire

graph is defined in a single global object coordinate system

O(x,y,z,w). Additionally, the data structure consists of

the A-table which contains surface attributes of individual

surface elements, and the I-table which contains identifiers

to allow symbolic references to any entry in any table. A

summary of the graph representation is given in Figure 3.3.

Two special cases of tree representation need to be

mentioned now: quadtree and octree. A quadtree is a hier-

archical, ordered tree in which each non-terminal node has

an out-degree of 4. It has been used to encode efficiently

information formatted on a 2D grid, such as digital images

134,62], and, therefore, it can also store bivariate surface

representation as will be shown in Section 3.6. Similarly,

an octree is a hierarchical, ordered tree in which each

non-terminal node has an out-degree of 8. It is being used

to encode and process efficiently spatial information for-

matted in a non-homogeneous 3D lattice (41].

The graph representation employed here has the

following main advantage over a tree representation: it

allows a part of the surface representation which is

duplicated in the object space to be stored only once, and
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*l 7

Node Contents Type

B bounding volume
sphere
ellipsoid
parallelepiped

E surface element plane

sphere
quadric surface
bicubic patch

R surface relationship
shape classification
alternative representation
logical operation

- •object decomposition
object partition

T transformation
mS

- Table Contents

A surface attributes
B bounding volumes
E surface elements
G surface graph
I symbolic identifiers
R surface relationships
T transformations

Figure 3.3 Summary of hierarchical surface representation
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each of its instances to be generated with the appropriate

3D transformation during a traversal of the graph. Simi-

larly, each volume primitive needs to be defined only once

in a standard orientation and then transformed into its ac-

tual locations in a solid object.

Either depth-first or breadth-first traversal of such a

graph is possible. Depth-first traversal is used in the

processing algorithms here. It requires a stack in which

the pointers to all successors of the current node, which

are to be visited, are placed together with their 3D trans-

formations. These transformations are computed by concate-

nating the 3D transformation of the current node with the

transformation in the arc pointing to the successor. The

next node on the top of the stack is visited next until the

stack is emptied. However, if a program frequently trav-

erses a graph, these redundant computations of 3D transfor-

mations can be eliminated by taking a pre-processing step

which (1) trnsforms all the coordinate information in the

graph to the absolute object coordinate system, and (2) con-

verts the graph structure to a tree structure, i.e., it gen-

erates all instances of nodes with in-degree greater than 1.

I

3.2 Relational Connections

The relational connectivity of a surface model gives

the logical and geometrical relations among the parts of a
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surface, among the parts of an object, or among a group of

objects. These relations are mainly intended for any scene

analysis and object recognition work that may be performed

with this representation. The following five relational

categories are currently defined:

(1) shape classification,

(2) alternative representations,

(3) logical operations,

(4) object decomposition, and

(5) object partitions.

The relational connectivity of a surface is stored in the

R-nodes of the surface graph and in the associated R-tables.

The shape-classification table contains general infor-

mation on the 3D shape of the first successor of the current

R-node. It is classified into one of these standard shapes:

stick, blob, or box. The second successor contains a

polyhedral convex-hull representation.

The alternative-representation table provides the abil-

ity to switch from one representation to another; there-

fore, the same surface may be described by more than one

representation. The first successor of the current R-node

contains the original representation; the subsequent suc-

cessors contain the alternative representations which

usually are polyhedral or quadric surface approximations.

The loaical-operation table defines logical relations

of the successors of the current R-node. AL the present

53



time, there are defined three set operators: union, inter-

setio, and difference, which operate only on closed vol-

umes. The union operator produces the union of all the suc-

cessors. The intersection operator produces the inter-

section of the first successor with each subsequent succes-

sor. The difference operator produces the difference be-

tween the first successor and each subsequent successor.

Note also that there is an implied union of all successors

in each B-node. During the ray-tracing traversal of a

graph, all the intersections of the ray and the volumes con-

tained in the successor nodes are combined according to the

specified set operator into line segments of the ray inside

the valid volumes [63]. These set operators are used in a

numter of solid modeling systems [4,62,63] to design compli-

cated objects with CSG trees of volume primitives. They are

*m specially useful for interference checking and sectioning.

In the next chapter, we will propose a segmentation algo-

rithm that will convert an arbitrary 3D solid object into a

CSG tree made of these three operators and a set of solid

primitives by employing the surface matching algorithm.

The object-decomosition table allows logically and

physically separable parts of an object to be segmented, and
0R

their spatial relationships, such as "on top of," "next to,

-. supports," "attaches," "connects," "screws in," etc., to be

identified. A list of relationships between all pairs of

successors is provided. Such segmentation is essential for
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relational matching of 3D objects [46,69].

The obiect-Partitions table provides the means to group

a set of objects stored within the same graph into parti-

tionss of similar objects. A successor of the current

R-node contains either an object or a group of objects with

similar shape. The last successor of this node then con-

tains a characteristic description of the objects in the

preceding successors, which typically is a coarse polygonal

approximation. When a graph containing a library of objects

-- is used to identify an unknown object, the unknown object is

matched against the objects in the node's successors only if

the unknown object is close to the object description in the

i current node [69].

3.3 Bounding Volumes

A boundinQ volume is an "invisible" surface element or

a set of surface elements completely enclosing a volume

which in turn may contain other bounding volumes or surface

elements. The purpose of bounding volumes is to partitions

the 3D object space to minimize the searching and sorting of

surface elements as is required in a number of algorithms

for processing 3D surfaces. During the ray-tracing trav-

ersal of a graph, whenever a ray misses a bounding volume,

L. it also misses the bounding volumes and surface elements

within it and, therefore, the successors of the bounding
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volume are not visited. An intersection between a ray and a

bounding volume is usually much faster to compute than an

intersection between a ray and a surface element. A bound-

ing volume may optionally contain its own, appropriately

coarse, description of the surface elements within it,

usually computed by merging these surface elements. Should

a processing algorithm determine, from, let us say, the size

of the bounding volume that a more precise description of

the surface is not required, it uses the surface description

in the bounding volume and omits to visit the bounding vol- -

ume's successors. Possible bounding volumes are:

(1) sphere,

(2) ellipsoid, and
• .5

(3) 'parallelepiped.

Ellipsoids and parallelpipeds should be oriented to minimize

their volume. Only spherical bounding volumes are used in

the examples throughout this work.

A bounding volume is stored in a B-node of the graph.

It contains the type of the volume and a pointer to an entry

in a B-table. A B-table contains the coefficients of the

volume and an optional approximation of the surface elements

within the volume. There is also a normal vector which is

the average of the normal vector field to the surface ele-

ments in the terminal nodes within the volume. The magni-

tude of each normal vector is proportional to the surface

area it represents. This, in effect, gives a hierarchical
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representation of the surface's Gaussian May [221.

A bounding sphere is computed by an algorithm for the

problem: "given a set of N points in 3D space, find the

smallest sphere enclosing them." The smallest enclosing

sphere is defined either by two points which define its

diameter or by three points of the set. An algorithm which

tests all the spheres defined by two or three points of the

- [set and selects the smallest sphere which encloses all the

points runs in O(N2 ) time. An improved algorithm by Shamos

" .-. 164] locates the defining points of the smallest sphere from

the extreme points of the set by constructing a Voronoi

diagram and runs in O(N log N) time.

* A bounding volume entry contains the following informa-

tion stored in a B-table:

. - (1) a description of the bounding volume geometry;

(2) an optional approximation to the surface contained

within the volume;

* (3) error of this approximation, computed as the

average distance between the actual surface con-

* tained in the the terminal nodes and the current

*approximation; and

(4) average surface-normal vector integrated over the

actual surface within the bounding volume.

The error between an actual surface and its approximation in

a bounding volume is also computed by the ray-tracing

method. Rays from the actual surface representation in the
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surface-normal direction are intersected with the approxi-

mated representation. The error is computed as the average

of the intersected distances, each weighted by the surface

area which the ray represents.

3.4 Surface Elements

A surface element is a geometric representation of the

surface shape. Surface elements are contained in the

terminal R-nodes of the graph representation. The surface

elements used here are:

(1) planar face,

(2) sphere,

(3) quadric surface, and

(4) bicubic patch.

The surface elements usually have two different representa-

tions - algebraic and parametric. The algebraic representa-

tion is an equation in the form f(x,y,z,w) = 0. This repre-

sentation, which is used in algebraic geometry, is useful in

tasks such as "determine whether a given point h(x,y,z,w) is

on the surface, inside, or outside." The bounds of the ac-

tual surface given in this representation are other algebra-

ic surfaces in structured logical trees. For a given point

to be a part of the actual surface, it must satisfy the

logical relations (inside, outside) given by the bounds.

The parametric representation is a vector g(u,v) = ( x(u,v),
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y(u,v), z(u,v), w(u,v) ] where each component is an equation

1mU of the two parameters u and v. This representation, which

is used in differential geometry [22], is useful in tasks

such as "generate all points on the given surface." The
nI

bounds of a surface element in this representation are

limits on the parameters U and v.

An E-node contains the type of the surface element and

a pointer to an entry in an E-table which contains the coef-

ficients of the surface representation. The two representa-

"" tions are given in detail for each type of surface element

in Appendix C. There is a separate E-table for each type of

- - surface element. The surface bounds are defined in addi-

* tional auxiliary tables. The planar elements have a table

of edges and a table of vertices; the quadric elements have

a table of logical trees of other quadric surfaces. Sphere

representations do not have bounds, and bicubic patches are

" defined over a unit square of the parameter space. Each

surface element also has a set of surface attributes con-

taining various properties of the surface other than its

shape. These are stored in the A-table. Currently, only

reflective, transmissive, and texture properties are mean-

* ingful for they can be displayed in shaded synthetic images.

* A surface element in the algebraic representation

defines two half spaces - inside and outside. The implied

union operator present in each bounding-volume node can be

used to combine the inside half speces into a closed volume
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which then can serve as a volume primitive. A closed volume

can be defined with the parametric representation by endless

variations on the isoparametric brick theme.

3.5 Geometric Operations

There are five elementary geometric operations that

need to be performed on the surface elements and the bound-

ing volumes:

(1) 3D rigid transformations,

(2) evaluation of surface-normal vectors,

(3) evaluation of surface curvatures,

(4) intersection with 3D lines, and

(5) test for surface existence.

A 3D rigid transformation T{Ok-->Oki) of a surface ele-

ment or a bounding volume from object space Ok to object

space Ok i is specified by a transformation matrix (C.3) or

by a list of x-y-z displacement, rotation, and scale parame-

ters (C.4) from which this matrix is computed (C.5-8). An

entry in the T-tablg contains an optional list of the param-

eters and the transformation matrix T{Ok-->Ok,) as well as

its inverse T{Ok,-->k}. The 3D transformation is computed

during traversal of a surface graph by concatenating trans-

formations stored in the graph's arcs until a bounding vol-

ume or a surface element is reached.

The normal vector to a surface element or a bounding
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volume is computed from the algebraic representation by

equation (C.10), or from the parametric representation by

equation (C.11). The normal-surface curvature of the param-

etric representation is computed by (C.12).
*

The intersection between a surface element or a bound-

ing volume and a 3D line, specified in parametric form by

(C.13), is computed by substituting the parametric line rep-

resentation into the algebraic representation of the surface

element and solving the general equation f(x(t),y(t),

z(t),w(t)) = 0 for .. Note that the intersection of a line

and a bounding volume usually does not have to be solved

exactly, it is sufficient to determine whether the line

I pierces or misses the bounding volume. The intersections of

a parametic patch, which does not have an algebraic repre-

sentation, and a 3D line is computed by solving a system of

three simultaneous cubic equations (C.34) with the parame-

ters of the line (i), and the patch (u,v) as the unknowns.

The algorithm which solves (C.34) is given in (C.41).

Alternatively, this problem can be presented as that of

computing the intersection of a line represented by the in-

tersection of two 3D planes with the patch which is a simi-

larly complex problem of solving two simultaneous cubic

equations with patch parameters (u,._) as the unknowns. All

the results which involve the computation of an intersection

between a parametric patch and a line in this report, either

in surface matching and merging or in image generation, have
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been computed with algorithm (C.41).

The intersection evaluation is always followed by a

check to determine whether the intersection point is a valid

surface point, i.e., whether it is within the specified sur-

face bounds. For algebraic representations this involves

searching logical structures of bounding surfaces also given

in the algebraic form. For parametric representations the

u, parameters of the intersection point must be within the

designated limits of the parameters. Details describing all

these geometric operations for each type of surface element

are given in Appendix C.

3.6 Generation of Surface Ouadtrees

This section describes a recursive algorithm which

computes a quadtree structure of 3D bivariate surface data

formatted in a 2D array. The array is defined by a 2D pa-

rametric coordinate system P(u,v,w). We assume that we are

given an (M+1) x (N+1) array of 3D control points and,

optionally, also 3D curves connecting the adjacent points.

Some of the pcints and curves in the array may be missing.

A surface patch can be computed from a cycle of four adja-

cent points lIm,n(x'y'Z'w)' Tm+l,n(X,y,z,w), h+l,n+l(xyz,

w), and hm, n+(x,y,z,w); similarly, it can be computed from

a cycle of four adjacent boundary curves. The details of

these procedures are given in Appendix A. The quadtree al-
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gorithm uses the full resolution of the array to generate

U surface elements (patc es) and bounding volumes (spheres) at

the bottom level of the quadtree. It then passes the data

points at the intersections of every other row and column of

the array to the next level of the quadtree; that is, it

reduces the resolution of the array by a factor of two in

each direction. The next level is computed from this

reduced resolution, linked to the level below it, and the

process is recursively repeated until the array is reduced

to 2 x 2 data points and the root of the tree is reached.

Once the coefficients of a patch are computed, a grid

of 3D points within the patch is generated. The points are

* used to compute (a) the bounding volume (a sphere), and (b)

a discrete field of normal vectors (22], which is averaged

S. into a single normal vector representing the orientation of

the patch. Each normal vector is weighted by the surface

area it represents.

Four patches which share a common control point are

merged into a single patch at the next higher level of the
31p

quadtree, as shown in Figure 3.4. The successors of a

non-terminal node in a quadtree are always ordered, relative

to the parametric coordinate system P(u,vw), as is also

• shown in this figure. Because we need not only the 3D

positional data to compute surface patches, but also the 3D

slope data (Appendix A], we actually use the points in a

reduced array to define positions, and the deleted points to
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Quadtree Biiiary tree

Figure 3.4 Quadtree and binary tree structures of bivari-ate surface representation in a paramietric co-ordinate system P(u,v,w)
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help in estimating slopes. If not all four patches are de-

fined, then only the bounding volume is computed at the next

level. When computing bounding volumes at levels other than

the bottom level, care must be taken that each volume* 
*'

encloses not only the actual surface elements but also the

surface approximations in bounding volumes within the

current one.

An example of the quadtree construction procedure given

in Figure 3.5(a) shows a sheet of 4 x 4 patches computed

from an array of 5 x 5 control points. Figure 3.5(b) shows

several bounding volumes in the quadtree as translucent

spheres. The four smallest spheres - with green tint - are

at the bottom level of the quadtree, each cast around a

patch. There are 12 more such spheres, but which are not

shown in this image. The medium size spheres - with blue

tint - are in the middle level of the quadtree, each cast -01

around 2 x 2 patches. Finally, the largest sphere - with

red tint - is at the top level of the quadtree, cast around

all 4 x 4 patches. -4

An outline of the algorithm which recursively builds

the quadtree structure from a sheet of surface data is as

-- follows:

(3.1)
.J

Rroe/ dure quadtree (level,M,N);
begin
U1.f level = 0 then

bin
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(b)

Figure 3.5 Image of a 4 x 4 sheet of bicubic patches in
an object coordinate system O(x,y,z,w): (a)
only surface elements shown, (b) surface ele-
ments and bounding volumes of a quadtree shown
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for m :- 0 step 1 until M do
begin
-Lf n := 0 zt.e 1 until N do

if surface data at (m,n) existg t

compute surface element (r,n);
create E-node at (level,m,n);
compute bounding volume (m,n);
create B-node at (level,m,n);<.gild;

• - nd;
and;

else

fr m 0= 0 2 until M _d

I Df, n := 0 .ajt 2 until N d
begin
if B-node defined at

(level-l,m,n) I (level-l,m+l,n) I
(level-l,m,n+l) I (level-l,m+l,n+l)

merge bounding volumes of defined B-nodes
at (level-l,m,n), (level-l,m+l,n),
(level-l,m,n+l), and (level-l,m+l,n+l,;

if all 4 B-nodes exist thenbegin
compute surface approximation;
compute error of approximation;

create B-node at (level,m/2,n/2);

" enld;

M : M/2;
N N/2;

and;

level := level + 1;
- if M>2 I N>2 then quadtree(level,M,N);

return;gild;

An alternative arrangement to the surface quadtree rep-

! • resentation is the binary tree representation. Such a tree

is created by merging two adjacent surface elements which
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share a common boundary at any level of the tree [Figure

3.4]. The direction of the boundary across which the ele-

ments are merged usually alternates from level to level of

the tree. The main goal, however, when selecting the

direction of a merger is to minimize overlap of the bounding

volumes.

3.7 Illustrations

The example of the reconstructed test surface

'SURFACE.3' from Chapter 1 is continued here. Figure 3.6

shows the quadtree structure of the surface; the branches

of the tree are solid and the boundary curves of the patches

are dotted. The nodes of the quadtree are the locations of

the centers of the bounding spheres. Figure 3.7 shows the

surface-normal vector at each node of the quadtree; the

branches of the tree and the patch boundary curves are

dotted and the normal vectors are solid. This model,

'SURFACE.3', consists of the following information:

1 sheet
207 bounding volumes
176 control points
146 patches at level 0
5 quadtree levels

The surface shown in Figures 3.6 and 3.7 is contained in the

bottom level of the quadtree. Also, the four images in Fig-

ure 2.11 were generated from the bottom level of the quad- p

tree.
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Figure 3.6 Quadtree of surface patches (tree branches
solid, patches dotted)
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Figure 3.7 Quadtree of normral vectors (normal vectors -

solid, tree branches and patches dotted)
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The next three examples use 3D surface models which

were obtained from sources other than our surface acquisi-

tion method. The data for these surfaces had to be

converted first into the standard surface representation.

. The first two examples demonstrate objects modeled by large

numbers of sheets of bicubic patches which define closed 3D

*• volumes; the third example represents open surface model

formed by a single surface sheet. The first example is a

surface description of an F100 engine blade designed by an

external CAD/CAM system. The data for the 'F100' surface

model contains:

47 sheets
3205 bounding volumes
2853 control points

. 2300 patches at levels 0
2 to 7 quadtree levels in a sheet

Four views of the blade are shown in Figure 3.8, drawn as

line-drawings of the patch control points at level 1 of the

quadtrees. Four synthetic images of the blade, using level

0 of the quadtrees, are shown in Figure 3.9. In the bottom

two images the blade is placed on a planar surface and casts

a shadow. The second example is a model of a J79 turbine

blade. The data for the 'J79' model contains:

63 sheets
3819 bounding volumes

. 3551 control points
2519 patches at level 0
2 - 7 quadtree levels in a sheet

Four line drawings of this blade are shown in Figure 3.10.

Four synthetic images of the blade, in orthographic pro-
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Figure 3.10 Four views of a J79 turbine blade (3D network
of lines)
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jection, are shown in Figure 3.11. The line drawings show

quadtree data at level 1; the images show quadtree data at

level 0. The two blade models shown in Figures 3.9 and 3.11

were assigned highly specular reflections to simulate a

metalic surface.

The third example represents a 3D terrain model ob-

tained from a digital contour map of the Fall River Pass

Quadrangle in Colorado. The actual area of the modeled

terrain is 6.6 x 8.5 miles. The ratio of the vertical scale

to the horizontal scales in this model is 7:1:1 which

significantly exaggerates the terrain's elevation. The sur-

face model 'TERRAIN' contains the following data:

1 sheet
5489 bounding volumes
4218 control points
4088 patches at level 0

8 quadtree levels

There are four views of the terrain, drawn at level 2 of the .

qu&dtree, shown in Figure 3.12. There are four similar

views of the terrain shown in the images of Figure 3.13.

The first image (upper left) was generated from data at

level 0 of the quadtree which contains 56 x 76 patches. An

image of the original contour map is shown under the

terrain, mapped on a rectangular plane. The other three im-

ages were generated from data at level 2 of the quadtree

which contains 14 x 19 patches. Notice the difference in

L. detail between the two representations. The terrain is

shown from SSW (south-southwest), SSE, NNE, and NNW, respec-
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Figure 3.11 Four images of a J79 turbine blade (3D quad-
trees of bicubic patches)
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Figure 3.13 Four images of a terrain model (3D (pic~trec of
bicubic patches)
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tively, with the sun at SE, 30 degrees above the horizon.

The colors of the surface are computed as a function of

" elevation from a look-up table; they range from dark green

in the valleys through light green, yellow, orange, and

light brown to dark brown at the mountain peaks.

" The solid modeling capabilities of this system are

*demonstrated in the last two examples given in this chapter.

First, the logical set operations are shown on two volume

primitives [Figure 3.141. Volume primitive 'A' is formed by

union of three surface half-spaces: two spheres and one

cylinder; similarly, primitive 'B' is formed by union of

two planes and an ellipsoid [Figure 3.14(a)]. The union,

difference, and intersection operations, applied to the two

volume primitives, are shown in Figures 3.14(b), (c), and

(d), respectively.

* Finally, two section views of the J79 blade are shown

in Figure 3.15. They are made by intersection and differ-

ence, respectively, of the blade model and an invisible par-

allelepiped which encloses the left half of the blade. One

face of the parallelepiped intersects the blade in the

vertical and front-back directions. Since the parallelepi-

ped is invisible the sectioned blade appears hollow; the

*. very dark surface is the back surface of the blade in shadow

of the front surface.
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'A' 'B'

(a) (b)

• I

(c) (d)

Figure 3.14 Modeling of solids: (a) two volume primi-
tives, (b) union, (c) difference, (d) inter-

section
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3.8 Summa

In this chapter we presented an experimental modeling

system for hierarchical representation of 3D surfaces, vol-

umes, and objects. The system is intended for a wide range

of applications, from CAD/CAM to computer vision. Desirable

features such as good user interface for designing new sur-

faces and editing existing surfaces, or automatic testing

for validity and consistency of representation (detection of

nonsense objects) that are mandatory in an actual modeling

system are beyond the scope of this work. All application

algorithms which process this surface representation use a
common ray-tracing traversal procedure to obtain a list of

.-4

intersections of a ray with the surfaces in a directed,

acyclic graph. Surface data is usually provided to the sys-

tem as bivariate surface elements which are then structured

into hierarchical quadtrees. However, representation by

polyhedral and quadric surfaces is also available. New sur-

face elements can be simply added to the system, provided

that the five geometric operations (Section 3.5) are de-

fined. These are the only operations in the entire system

which depend on the type of surface representation.

8-4
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CHAPTER 4

SURFACE MATCHING
U"

Following the prerequisite processing described in the

last two chapters, we finally reach the heart of this work -

matching of 3D surfaces. In the context of this work,

matching of 3D surfaces refers exclusively to finding a

spatial registration of two 3D surface descriptions that

maximizes their shape similarities. If a measurement of the

shape similarities is acceptable then the surfaces are said

to match, and the spatial registration aligns them. In or-

der to find such a match, the two surface descriptions-must,

of course, completely or partially overlap, i.e., there must

be a set of surface points common to both surface descrip-

tions. Note that we do not refer here to other, possibly

similar, types of matching such as (a) matching 2D projec-

tions with 2D models of 3D objects 117,29,14], (b) matching

2D projections with 3D models [9,11], or (c) relational

matching of features of 3D objects and 3D models [69].

There are a number of problems where two or more 3D

surfaces need to be matched. For example, a partial 3D sur-

face description of an unknown object is obtained from one

(stereo) vantage point. The object is to be recognized by

matching this partial 3D surface description with a set of

3D models of various objects. Or pieces of broken pottery

-.4 83

. . -. .% . . . .. . . . o. . . , . .. , . , . . .. . - - . . . . - .. , - . - . .. . : . . - . . . - . . .- , .. .



or fragments of objects need to be matched to allow recon-

struction of the original objects. Or a 3D description of

surface below an aircraft needs to be matched with a 3D

terrain model to determine accurately the position of the

aircraft. In the scope of this work, we need to match 3D

surface segments of an object, which were generated while

the object was in several stable positions and parametrized

by several parameter systems, in order to build a complete

3D model of the object.

The matching algorithm of two 3D surfaces, which may .

completely or partially overlap, consists of two major

steps: (1) initial estimates of the surface registration

are computed by alignment of known points on both surfaces

or alignment of surface-normal vectors representing surface

orientations, and (2) a heuristic search improves these es-

timates by varying transformation parameters to find an

acceptable solution. The measurement of shape similarity

between the two surfaces is computed by an evaluation func-

tion from the following information, obtained for a number

of points distributed on both surfaces: (1) Euclidean

distance to the other surface, (2) angular difference be-

tween normal vectors, and (3) difference in local surface

curvatures. The ray-tracing traversal of a surface descrip-

tion computes this information. Given a point on one sur-

face and the surface-normal vector at this point it finds

(1) the nearest intersection with the other surface, (2) the
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surface-normal vector at the point of intersection, and (3)

the surface curvature at the point of intersection. The

matching algorithm is independent of the surface representa-

tion which is confined only to the ray-tracing process.

Following the description of the matching problem, we

present a number of algorithms which merge, into a single

concise description, those overlapping surfaces that were

either obtained in the same object coordinate system, or

transformed into the same object coordinate system by the

.14 matching algorithm. The first algorithm merges two param-

etrized surfaces into a common 2D parameter coordinate sys-

tern by a transformation of one parameter coordinate system.

The second algorithm and its varia-tions reparametrize the

surface descriptions into a new parameter coordinate system

by projecting this system on the surfaces. They can also be

used to parametrize surfaces given only in algebraic repre-

sentations. The third and last merging algorithm, which is

applicable only to surface descriptions of a solid object,

converts the surface representations into a polyhedral vol-

ume representation made of rectangular parallelepipeds.

This solid representation can be further converted into the

octree representation [44].

Finally, this chapter closes with descriptions of three

applications of the matching algorithm to (1) generation of

complete 3D models, (2) surface and object recognition, and

(3) surface and volume segmentation with surface and volume
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primitives. The first application also uses the merging al-

gorithms. It has been implemented and tested with several

objects. The last two applications are described as

suggested approaches to these problems.

4.1 Types of Matching

There are two basic types of surface matching [Figure

4.1] that are of interest in this work. Given two 3D sur-

face descriptions, represented by graphs G and a':

(a) surface description G is completely contained in

description G' [Figure 4.1(a)]; that is, the in-

tersection set of G and G' is G (e.g., a surface

segment is being matched with a complete object

model); and

(bo surface description G is only partially contained

in description ' [Figure 4.1(b)]; that is, the

intersection set of G and G' is a subset of G and a

subset of Q' (e.g., two overlapping surface seg-

ments of an object are being matched).

These two types of matching differ in the approach that the

matching algorithm uses in generating the initial estimates

of the surface registrations. In case (a), it emphasizes

the spatial registrations that completely match a to 2'. In

*. case (b), it emphasizes the spatial registrations that match

only a portion of G to a portion of G. The first type of
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LA igure 4I.1 Types ofsurface .ofmatching: (a) G completely
overlaps 21, (b) partially overlaps ~
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surface matching is used for object recognition. The second

type is used for generation of complete object models, and

for their segmentation with surface and volume primitives.

A similar type of surface matching could also be used 77

for solving the 3D "jig-saw puzzle" problem where surface

segments with only common boundary curves (e.g., broken

pottery pieces) need to be matched and spatially registered.

In this problem each surface segment would be extrapolated

and labeled as either "actual" or "extrapolated" sections.

The matching algorithm would then compute spatial regis-

trations by matching the "actual" sections of G with the

"extrapolated" sections of 9', and the "extrapolated" sec-

tions of with the "actual" sections of '

4.2 Surface Transformations

The goal of the matching algorithm is to compute a ri-

gid 3D transformation that matches two surface descriptions

and aligns them into the same object coordinate system. In

this section we describe two types of rigid 3D transforma-

tions [Figure 4.2], used by the matching algorithm, and the

computational methods that generate them. The two transfor-

mations consist of different numbers of transformation pa-

rameters. The first transformation is a general transforma-

tion between two arbitrarily-oriented object coordinate sys-

tems. It consists of three translation, three rotation,
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.4 Figure 4.2 Surface transformations: (a) general, (b) lrn-

ited to z' z
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and, optionally, three scale parameters. The second trans-

formation is a limited transformation between two object co-

ordinate systems which have one of the three axes parallel.

It consists of two translation, one rotation, and,

optionally, two scale parameters. It is used only when

there is A priori knowledge that the object, whose surface

segments are being matched, remained in the same stable

position. The scale parameters are normally not used since

it is assumed that all the surface descriptions have been

obtained to the same scale - the actual size of the sur-

faces. They would only be used for object segmentation with

surface and volume primitives defined at some standard size.

A general transformation T{Ok->Ok,} [Figure 4.2(a)]

from homogeneous object coordinate system O(x,y,z,w)k to ho-

mogeneous object coordinate system O(x,y,z,w)k , is expressed

as:

(4.1)

x x tll t12  t13  t14  x

y y t 2 1  t 2 2  t 2 3  t 2 4  y
= T{Ok-Ok'}

z z t31  t32  t33  t34  z

w ' w L 0 0 0 1 w Ik

This transformation consists of the following transformation

parameters: three translations (tx, ty, tz), three rota-

tions (rx, ry, rz), and, optionally, three scale factors

(sx, sy, sz). The twelve unknown coefficients of T{Ok--Ok ,}
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can be determined from the coordinates of four non-coplanar

points in O(C,yz,w)k and their corresponding images in

O(x'YZ'W)k"

A limited 3D transformation T{Ok--Ok ,} [Figure 4.2(b)]

"*. from homogeneous object coordinate system O(x,y,z,w)k to ho-

mogeneous object coordinate system O(x,y,z,w)k, with zk =

zk, is expressed as:

4-., (4.

x x t1l t12  0 t14  x

y y t 2 1  t22  0 t24  y
= T{Ok--Ok , }

z z 0 0 1 0 z
w w 0 0 0 1 w

k I k L- - k

This transformation consists of these transformation parame-

ters: two translations (tx, ty), one rotation (rz), and,

optionally, two scale factors (sx, sy). The six unknown co-

- efficients of this T{Ok--Ok,) can be determined from the A

and . coordinates of three non-colinear points in

* '- O(x,y,zuw)k and their corresponding images in O(x,y,z,w)k,.

4.- This transformation is available to simplify the matching

process when the two surface segments being matched have

been obtained from an object in the same stable position

with respect to the x-y planes in the O(x,y,zw) k and

O(x,y, z,w)k' coordinate systems.

*1..,. In general, a rigid 3D transformation, composed of

translation and rotation, is defined as:
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y [ t 2 1 t 2 2 t23 t 2 4 1

.r JEL t3 t32 t33 t341

or, for short,

"= "R Ti + t (4.4)

where E is a translation (displacement) transformation and

is an orthogonal rotation transformation which imposes the

condition:

(4.5)

for all vectors e and I in O(x,y,z,w). This condition

preserves the distance between any two points and the angle

between any two vectors. In addition, the determinant of

must be positive to preserve orientation (i.e. to avoid re-

flections) in the right-handed object coordinate system

O(x,y,z,w). The inverse, 1-l of an orthogonal matrix R is

equal to its transpose Rt. Note that R is the upper-left 3

x 3 principal submatrix of t in equation (4.1), and I is the

upper-right 3 x 1 submatrix of T. A transformation which

contains scale factors other than unity is not a true rigid

transformation because it does not preserve distances but

only angles.

The matching algorithm uses two methods to compute the

object transformation matrix (4.1) (the limited transforma-

tion (4.2) is only a special case of (4.1)). The first

method composes a transformation matrix for each transforma-
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tion parameter and multiplies these matrices into the total

transformation [Appendix C.l121. A rotation matrix composed

by this method is guaranteed to be always orthogonal.

The second method determines the transformation from

matched points in the two object coordinate systems. Given

a point l(x,y,z,w) in O(x,y,z,w)k and its image h' (x,y,z,w)

in O(x,y,z,w)k , we rewrite (4.1) as a system of three linear

equations with twelve unknowns:

(4.6)

- x y z 0 0 0 0 0 0 0 0 tl x

0 0 0 0 x y z 1 0 0 0 0 t12  = y

' 0 0 0 0 0 0 0 0 x y z 1 L
.- J k z k-

t33

_t 3 4 _

or, for short,

T D '(4.7)

.'* With three additional points we can express system (4.6) as

twelve equations with twelve unknown coefficients of T. In

* :2general, for N 2 4 points the least-squares method is used

* "to minimize the sum of squares of distances between the

matched pairs of points Iii and h'i in equation (4.4):

* N
, minE[E I Ti'i - + E 12] (4.8)

i=l

' "which yields the standard least-squares solution:
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This solution, however, does not guarantee to be orthogo-

nal. Once we have obtained the translation vector I from

(4.9), we can improve the othogonality of ] by also using

the inverse transformation of (4.4), namely:

A- - (Ti,-E) = t (Ii,-E) (4.10)

to minimize the squares of distances, as in (4.8), with the

transformation ' and its inverse t:

N
min[- I -i ii+E 12 + I t (,iE)_-Ti, 12] (4.11)

i=1

The solution to (4.11) is similar to (4.9), and still not

necessarily orthogonal. Note that to obtain an exactly or- "

thogonal R we would have to solve a system of nine simulta-

neous quadratic equations. To avoid this, the matrix R ob-

tained from (4.11) is converted to an orthogonal matrix with

the following procedure:

(4.12)

(1) convert each row (column) vector, i' of R to a

unit vector;

(2) find two most orthogonal row (column) vectors, i

and j

'Fi . j i < I i . r I, and
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(3) make Yi and ij orthogonal:

"i - ri - (ri'rj) rF ;

' (4) convert new Fi to a unit vector;

(5) make "k othogonal to ri and rj :

rk - rj X j

(6) preserve orientation:

' if IRI < 0 then rk = -rk"

In summary, a rigid 3D transformation is computed from

the coordinates of 1i points in O(x,yz,w) and their images

in OI(x,y,z,w) by equation (4.8) which obtains translation

-, equation (4.11) which obtains rotation R, and procedure

(4.12) which makes R orthogonal. The last step prevents

skewed and sheared transformations.

4.3 Matching Algorithm

The matching algorithm computes a 3D rigid transforma-

tion T, composed of a rotation matrix R and a translation

vector t, which spatially registers (aligns) surface de-

scription ! with surface description 2'. This transforma-

tion occurs when the orientation and shape differences be-

* tween the two surfaces are minimized (i.e., the shape simi-

larity is maximized). The orientation and shape differences

Lj are evaluated at a number of evlution points on surface 1

from information provided by the ray-tracing procedure
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[Chapter 3]. For a ray in the direction of the sur-

face-normal vector at an evaluation point, li(x,y,z,w) i , on

surface G this procedure finds the nearest intersection with

.', the surface-normal vector, and the normal surface curva-

ture, both evaluated at the point of intersection. The dif-

ferences in surface orientation and shape are computed from

these components:

(1) position difference, pi(T), is the 3D Euclidean

distance in the object coordinate system O'(x,y,z,w):

Pi ( = i (1i(x,Y,z,w)i - (x,Y,z,w)i I (4.13)

where

= current transformation from O(x,y,z,w)

to O' (x,y,z,w)

h(x,y,z,w) i = an evaluation point on surface G

i' (x,y,z,w)i = the point of intersection on surface G

(2) orientation difference, ai(T), is the angular dif-

ference of the surface unit-normal vectors oriented to the

"outside" of the surfaces:

ai(T (R " 'i-.0 j (4.14)

where

= current rotation from O(x,y,z,w) to 0' (x,y,z,w)

Ni - unit normal vector at i(x,y,zw) i

= unit normal vector atE' (x,yz,w) i
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(3) curvature difference, ci(T), is the magnitude of
* o

difference of the surface normal curvatures:

CT) I qi - q'i i (4.15)

where

qi = normal surface curvature at i(xy,zw) i

qi - normal surface curvature at Ti' (xy,z,w)-

The total surface difference, di(T), at this point is

then defined as a linear combination of these three

*.components:

d i () = Wpp i (f) + waai(-) + wcci(-) (4.16)

where

* Wp = a weight of position distance pi (_)

wa = a weight of angular difference ai ('T)

Swc = a weight of curvature difference ci (T)

-- Given N evaluation points on surface G, which are used

." in computing the surface registration, we seek a 3D trans-

formation T such that:

N
D(') = Widi(T) < epsilon (4.17)

where

dilT) = surface difference at point li(x,y,z,w) i

wi = a weight of point fi(x,y,z,w) i

epsilon - an acceptable difference between the two sur-

face descriptions G and G' for a match
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An additional condition requires that a correct surface

match be found for at least M of the ]a evaluation points

where 4 << M N. Notice that a ray from F(x,y,z,w) i may

(a) miss G', in which case di = 0, or (b) find an incorrect

match with ' (Figure 4.3], in which case:

(4.18)

rather than

(4.19)

for any point F(x,y,z,w)j, near Ti(x,y,z,w) i , and its inter-

section Ti' (x,y,z,w)j on G' (i.e., as stated in Section 4.2:

the distance of any two points must be preserved by T). If

the relationship (4.18) is valid for the point 1i(x,y,z,w) i  .

then di = 0.

Having defined the method which evaluates the surface

difference, we shall now describe the actual search algo-

rithm for a spatial registration which minimizes this dif-

ference between the two surfaces. A basic matching algo-

rithm which would blindly wander in its task without any

guidance can be outlined as:

(4.20)

A naive algorithm

(1) Select a set of 1! evaluation points on 3.
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(2) Generate a new transformation T of G.

(3) Compute surface difference, di, at each evaluation

point, h(xy,zw)i, transformed by T, with G'.

(4) If the total difference D(T) is less than erjlo 77

and M is much greater than 4 then the surfaces

match and T aligns them, otherwise go to (2).

Clearly, an exhaustive search for the transformation

parameters of T would be computationally prohibitive. A

hill-climbing method, that would adjust each parameter in

turn, would also be computationally excessive and probably

would fail in a number of cases. A viable method to reduce

the search task -is to use a state-space search method (48, ,

49] with an evaluation function to guide the search for the

transformation parameters of T that satisfy (4.17). This

method represents the search process by a graph whose nodes

are generated by successor operators which attempt to

improve the node's surface registration. An evaluation

function, e, provides a ranking of the graph nodes to

determine which nodes are most likely to be on a path to the

solution and should, therefore, be expanded. An outline of

this algorithm, adapted to the domain of our problem, can be

specified as follows:

(4.21)

An ordered-search algorithm

(1) Generate start nodes, ni , and their T transforma-
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tions; put them on list OPEN, compute e(ni ) for

.p each start node ni.

(2) If OPEN is empty exit with failure.

(3) Remove from OPEN a node n with the smallest e(n)

and put it on list CLOSED. If CLOSED becomes full

exit with failure.

(4) If D(T) of n is less than eio andM of n is

much greater than 4, exit with solution T of .n.

(5) Expand node n, generate all of its successors by

computing their T transformations; for each suc-

cessor, ii, compute e(ni ).

(6) Put all successors, which are not already on OPEN

or CLOSED, on OPEN and link them to n. If OPEN

becomes full exit with failure.

(7) For all successors which are already on OPEN or

CLOSED, if new e(ni ) is lower than the old e(ni )

then replace it; move from CLOSED to OPEN all

nodes whose value e(ni ) was lowered. If OPEN

becomes full exit with failure.

(8) Go to (2).

Each start node is the root node of a search tree; all the

* .terminal nodes of a search tree are on list OPEN. The

critical parts of this algorithm are the choice of the eval-

uation function e(n), the test for the presence of a succes-

sor node on OPEN or CLOSED in steps (6) and (7), the selec-
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tion of the evaluation points on surface G to be matched

with 2', and the strategies of the successor operators which

(a) generate start (root) nodes of the search trees in step

(1), and (b) expand (terminal) nodes on OPEN in step (5).
-- 1

These parts of the matching algorithm shall now be described

in detail.

The evaluation function critically affects the search

process. A function which is too generous will cause the

expansion of too many nodes. On the other hand, a function

which ignores the potential of some nodes can lead to a fu-

tile search. The currently used evaluation function, e(n),

is a weighted sum of the surface difference D(T), the -:

inverse of the number of matched evaluation points, and the

length of the tree path from the current node to its start

node:

e(n) = WDD(T) + wM/M + wLL(n) (4.22)

where

D(T)= difference of G, transformed by T, and G'

wD = a weight of surface difference D(T)

M = number of matched evaluation points

wM  = a weight of inverse of number of matched points

L(n) - the path lenght from n to its start node

wL - a weight of path lenght L(n)

The first two terms of the evaluation function (4.22)

provide huristic information about the quality of the
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spatial registration.

The ordered-search algorithm has to check, in steps (6)

and (7), whether a successor node is already present on OPEN

or CLOSED. Each node contains the coordinates of a standard

3D vector, H, transformed by the node's T transformation.

If the distance of the transformed vector, T H, of a succes-

sor node is less than a selected tolerance from i t of a

- ,node already on OPEN or CLOSED, then the transformation of

the successor node is assumed to be the same as that of the

node on OPEN or CLOSED and the successor node is already

present there.

The set of evaluation points on surface G, where the

* surface difference (4.17) is computed, should fairly repre-

sent the shape of the surface. There are two possible

approaches, considered here, to the selection of these eval-

uation points: (a) find "critical" points at high surface

curvature (e.g., surface vertices and edges), or (b) gener-

ate regularly spaced points on a parametric grid. The first

approach, although potentially more powerful, suffers from a

' -. number of problems. It is difficult to find individual sur-

face points with significantly higher curvature on

relatively smooth, multiply-curved surface segments (see

'SURFACE.3' in Figures 2.9-11). On surfaces with constant

curvature (e.g., spheres and cylinders) this method fails

completely. On highly-curved surfaces these points tend to

cluster along surface edges and be colinear. A search to
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locate points with maximum surface curvature is also

computationally demanding.

In the second approach, adapted by the matching algo-

rithm, the evaluation points are regularly spaced on a sur-

face and hierarchically structured. A natural representa-

tion for this approach is the surface quadtree developed in

Section 3.6. The control (corner) points of parametric

patches are used as the evaluation points. In the initial

stages of a search, the algorithm uses the control points

from the high levels of a quadtree G; as the value of D(T) -

decreases, the control points are replaced by points from

lower levels of the quadtree and their number, therefore,

increases. Similarly, initially in a search the algorithm

intersects rays from these evaluation points with patches

stored in the high levels of quadtree G'. As the value of

D(T) descreases, patches from lower levels are intersected.

In summary, the matching algorithm, therefore, uses the hi-

erarchical surface description as follows: while the esti-

mate of the spatial registration is coarse, only a coarse

surface description is used to evaluate D(T); as the

spatial registration improves, D(T) is evaluated at more

points with more accurate surface description. Selection of

the quadtree level used in the evaluation of the surface

difference is a function of D(M):
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r0 if D(T) < Dmin (1)

I level = i if Dmin(i) < D(T) Dmax(i) (4.23)

levelmax  if Dmax(levelmax-l) < D(T)

where 0 < i < levelmax, and levelmax is the highest level of

a quadtree containing a surface approximation. An evalu-

ation point may be assigned a weight proportional to its

surface curvature. This weight is used in (a) evaluation of

D(T), and (b) generation of new I when a graph node is being

expanded. For surface and volume primitives it may be

desirable to define the evaluation points while creating a

*primitive.

There are two successor operators which generate the

graph nodes of a search process. A start operator generates

* the start nodes of this process from the initial orientation

of Q in O(x,y,z,w). These nodes are put on OPEN in step (1)
" of algorithm (4.21). An expansion operator generates the

-[ successor nodes of the node with the currently best spatial

registration in step (5) of this algorithm.

The start operator can use one of two approaches in

generating the initial estimates of the surface match: (1)
align known surface points, or (2) align orientation of sur-

Sface-normal vectors. In the first method, there are L (2 4)

points located on each surface. If they are not individu-

,* ally matched, all of their permutations must be matched,

generating L! initial nodes. This number, however, can be
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substancially reduced if there is (a) a priori knowledge of

their matches, (b) the matches can be generated with a

method such as stochastic labeling [11]. Once the matches

of individual points have been established, the transforma-

tion T is computed from equations (4.6-11) and procedure

(4.12) [Section 4.2]. This initial estimate of the spatial

registration T, however, contains errors caused by measure-

ments of the matched points, uncertainties of their matches,

and the orthogonality requirement of the rotation matrix R.

This registration is, therefore, improved by a further

search for a better alignment.

The second method generates the initial estimates of

the spatial registration by alignment of surface-normal

vectors present in the bounding volumes of the surface quad-

trees and representing orientation of the surface elements

within the volume [Section 3.3]. The two quadtrees, g and

, are traversed from their root nodes to bounding-volume

nodes of selected size (volume), and the normal vectors in

these volumes are spatially aligned. Since the four succes-

sor nodes in a quadtree are spatially ordered [Figure 3.4],

the two strategies of matching completely or partially over-

lapping surfaces [Section 4.2] can be implemented. If there

is A priori knowledge that the surfaces partially overlap,

then each quadtree is traversed only to the bounding-volume

nodes near the parametric boundaries of the surface descrip-

tion. However, if the surfaces completely overlap then each
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quadtree is traversed to all the bounding-volume nodes of

the selected size. Each visited bounding-volume node in G

is matched with each visited bounding-volume node in G'.

The surface-normal vectors in two bounding volumes, B-

and B', of G and ', respectively, are aligned as follows:

the translation, t, is computed by translating the center of

_ to the center of B':

. = y' Yc (4.24)

"-L ' zc zc  J,

and the rotation, R, of around this point is computed by

rotating N to N', and two additional orthogonal vectors N1

and N2 in Q to Nj and N in G', so that:

"N = N1  (4.25)

J R =N 2

where

N -N = N "N2 = Nl N2 - 0

- N'4"j ~= - * = Ni' - o.

These three pairs of orthogonal unit vectors are required to

compute the nine coefficients of A. After N has been

,-'i rotated to N', surface G can still be rotated around N [Fig-

ure 4.41. This rotation is determined by projecting the

centers of bounding volumes which are the successors of B
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and B' respectively, to planes perpendicular to N and N'

respectively. G is then rotated around N to match every

projected successor of . with every projected successor of

B' and to generate up to four initial surface registrations.

Each rotation is found by minimizing the sum of distances

* .between the projected successors of B and the projected suc-

cessors of B'.

This second type the start operator is implemented by

the matching algorithm because it uses only the surface in-

formation provided by the quadtree surface representation

(Chapter 3J. It does not require detection of special

points or features on the two surfaces and their matching or

any other additional extraneous processing. If the size of

the bounding volumes, aligned by the start operator, is

small then a good estimate of the spatial registration, re-

• sulting in a short search, is found. This, however, usually

causes a large number of initial nodes to be generated.

The expansion operator attempts to improve the spatial

registration of the best node present on OPEN in step (5) of

the matching algorithm (4.21) by generating its successors

with new 3D rigid transformations. It has these two

strategies available:

(1) compute T from the coordinates of T(x,y,z,w)i and

ii' (x,y,z,w) i for all M valid intersection points;

and

(2) modify values of the individual transformation pa-
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rameters of T.

The first strategy generates a successor whose trans-

formation T is computed by minimizing the sum of distances

of all M points ]i(x,y,zw) i  and their intersections

.i'(x,y,z,w)i  as described in Section 4.2 by equations

(4.6-11) and procedure (4.12). Additional successor nodes

may also be generated with transformations which are either

only translations or rotations. A translation transforma-

tion, I, is computed by minimizing the sum of distances:
N

minE i h - i + E 12], (4.26)
i--I

a rotation transformation, R, is computed by minimizing the

sum of distances:

N
min[ I hi - Y 1, 12 + I t 2' - *i J2], (4.27)

or by minimizing the sum of angular differences of sur-

face-normal vectors:

min[ZI 9 i - 1.0 - (4.28)

Equations (4.26) and (4.27) are evaluated for the coordi-

nates of points T(x,y,z,w)i and fi' (x,y,z,w)i; equation

(4.28) is evaluated for surface-normal vectors Ni and N'i at

I(x,yzw) i and i' (x,y~zw) i , respectively. Only the M val-

id intersection points are, of course, used to evaluate

these equations. The rotation matrices computed from (4.27)
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and (4.28) are made orthogonal by procedure (4.12). This

strategy, therefore, may produce four successor nodes by

minimizing spatial differences between the evaluation points

of G and their intersections on G'.

The second expansion strategy modifies the values of

the individual transformation parameters of T. The current

value of each active parameter is incremented and decrement- S

ed by a value proportional to the current surface difference

D(T). There are, usually, six active parameters - tx, ty,

tz, rx, ry, rz - whose values are modified, thus producing

12 successor nodes n, to n12 [Figure 4.5]. There are two

- functions, At(e(n)) and Ar(e(n)), which compute modifica-

tions of the translation and rotation parameters, respec-

tively:

* . Atx(nI ) = +.At(e(n)) I.&tx(n)i

Atx(n2 ) = -At(e(n)) iAtx(n)I

(4.29)

Arz(n 1 ) = +Ar(e(n)) IArz(n)I

Arz(nl2) =-Ar(e(n)) jArz(n)J

" The refinement functions At(e(n)) and Ar(e(n)) are func-

tions of the value of the evaluation function e(n) of the

current node n. If they halve the parameter increments of

the current node then this strategy approximates a binary

search. The values of the parameter increments in a start

&. -



Figure 4.5 Search tree of 3D transformation parameters
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node are set to allow the center of a bounding volume B to

be translated anywhere within B', and to allow the sur-

face-normal vector N in B to be rotated by 90 degrees from

N' inB'.

A combination of both strategies is currently employed

by the matching algorithm. The second strategy is more

effective near the beginning of a search; as the regis- tel
tration improves, the nodes generated by the first strategy

converge to the solution substantially faster since each

contains modifications of all active parameters rather than

only one parameter. Nodes whose transformations are

computed only as translations (4.26) or rotations (4.27-28)

gare usually not as effective as the nodes whose transforma-

tions contain both translations and rotations.

The matching algorithm has been able to find the cor-

rect spatial registration of complicated multiply-curved

surface segments, described by continuous, differentiable

surface representations. If the registration of the sur-

faces is ambiguous or the common (overlapping) surface area

is small, the algorithm finds a solution and can be restart-

ed to find further solutions from nodes still present on

OPEN.

4.4 Mergin, Algorithms

The second major problem in assembling complete models
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of 3D objects from surface segments is that of merging two --

or more surface descriptions of overlapping segments, de-

fined in the same object coordinate system, into a single

surface description, or converting them into a volumetric

representation. This section presents several algorithms

which:

(a) merge overlapping surface descriptions, given in

the same object coordinate system, into a single

surface description;

(b) merge overlapping surface descriptions of a closed

object, given in the same coordinate system, into a

single volumetric representation;

(c) reparametrize a parametric surface representation, A

or parametrize an algebraic surface representation;

and

(d) convert a surface representation of a closed object

into a volumetric representation.

During the process of generating a model of an object

from surface segments we need to merge two surface descrip-

tions Gk and Gk, under these two circumstances:

(a) Gk and GkI, originally defined in object coordinate

systems O(x,y,z,w)k and O(x,y,z,w) k , and parameter

coordinate systems P(u,v,w)j and P(u,v,w)j,, re-

spectively, have been matched and transformed into

O(x,y,z,w)k , and need to be merged into a single

parameter coordinate system P(u,v,w) (i.e., during
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the surface-acquisistion step, the object was moved

into a new orientation, which, in effect, also

moved the orientation of the parametrizing grid re-

gardless of whether the grid was actually

physically moved); or

(b) Gk and Gk,, defined in the same object coordinate

system O(x,yz,w)k O(x,y,z,w)k , but different pa-

rameter coordinate systems P(uv,w)j and

P(u,vrw)j,, respectively, need to be merged into

- the same parameter coordinate system P(u,v,w)

(i.e., during the surface-acquisition step, the ob-

ject remained in the same orientation but the pa-

*rametrizing grid was moved into a new orientation).

Finally, when all the surface segments of a closed 3D

object have been matched and are defined in the same object

coordinate system, it is also desirable to merge them into a

volumetric representation. The last algorithm in this sec-

tion converts a surface representation, which consists of o-

verlapping surface segments or a single surface description,

into rectangular parallelepiped volumes.

-- 4.4.1 Transformation of Parameters

This method merges two parametric surface descriptions,

L Gj and Gj,, parametrized by parameter coordinate systems

P(U,V,W)j and P(u,v,w)j,, respectively, by a transformation
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(Figure 4.6]:

U= u'(u,v) (4.30)

v, v'(u,v)

which has the property that the functions _U' and y' have

continuous partial derivatives, and the transformation can

be inverted (22]. A linear transformation from parametric

space P(u,v,w)j to parametric space P(u,v,w)j, is expressed

as:

(4.31)

> T{Pj--Pj, H = t21 t22 t23

-] 0 _

L J'w J L 0 1 J w J

The six coefficients of T{Pj-->Pj,} can be determined from

three non-colinear points 'E(u,v,w)j in P(u,v,w)j and their

corresponding images ]i(u,v,w)j, in P(u,vpw)j,. They are ob-

tained by rewriting (4.31) as two simultaneous linear

equations:

(4.32)

u v 1 0 0 0 tl u

0 0 0 u v I t12  v

t22

t23_

or, for short,
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G. G

i..

(a)

(b)

Figure 4.6 Surface merging of two parametric surfaces by
transformation of a parametric coordinate sys-
tem: (a) surfaces G. and Gg, in P(u,v,w). and

P'°vw , ,pci.l, Puv~)tas

formed tA P(u~v~w)j, merging Gj and Gj.
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'V "T = D' (4.33)

for each point F(u,v,w)j and its image h(u,v,w)j,. For L >

3 points, system (4.33) is again solved by the least-squares

method:

L DL _I DL L DL L

The corresponding parametric points in Gj and Gj, are

again found by the ray-tracing method. At each control

point Ti(m,n)j, of Gj,, where 0 <m <Mand 0< n < N, a ray

is cast in the direction of the surface normal vector and

intersected with Gj. If the nearest intersection point,

] (u,v~j, is such that

(x, yzYw)j -h W(x,y,z,w) J < epsilon (4.35)

where h(x,y,z,w)l fi(u,v)j and hi(x,y,z,w)j, E h

then the parameter values (m,n) and (u,v) belong to the same

surface point, h(x,y,z,w)j B h(x,y,z,w)j,, and form equation

(4.32). If three or more such pairs of points are found,

then the transformation T is computed with equation (4.34).

The two surfaces [Figure 4.6(a)] are merged by expanding Gj,

to include Gj. A new set of control points in the

P(u,v,w) j parameter coordinate system is computed on a

larger grid Mmin < m Mmax and Nmin < n < Nmax [Figure

4.6(b)]. A control point li(m,n), defined in G is
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directly copied to the new grid. A control point H(m,n),

not defined in Gj,, is transformed by T{Pj,-4Pjl to

P(u,v,w)j and obtained from Gj. If the point is also not

defined in Gj, then it remains undefined in the new grid.

This procedure is outlined as follows:

(4.36)

* - ~rocedure merge-transform;
begin

* ". [compute transformation]
"- L := 0;

for n := 0 st.j_ 1 until M do
Sbegin

I-fo m := 0 ste 1 until N do- begin
makeray (ray (m, n) ,G,);[i-i ~intersect (ray (m, n) ,., point (u, v) ); .

if point(u,v) valid
L := L + 1;
match (m, n, u, v,L);en2d;

mid;
-, if L < 3 then return (fail);

solve (match, L, T);
[merge surfaces to a new network]
for n := Nmin s 1 lnti Nmax -d2-- begin

1.gxo m := Mmin stQ 1 until Mmax A2
begin
find (point (mn),G_.,)
if point(m,n) voia t

transform (u, v,m, n, T);
find (point (uv) ,G-);
if point(u,v) valid te.D

- point(m,n) := point(u,v);en~d;
-- output (point (m, n));

=01;

"- return;

end;

In this method the parameter coordinate system of G.,
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remains in place while the parameter coordinate system of Gj

is transformed, potentially disrupting the parametrization

of Gj. The next section contains several algorithms which

parametrize both surfaces with a new parameter coordinate

system.

4.4.2 Projection of Parameters

This technique merges two or more parametric surfaces

into a single parameter coordinate system by projecting this

parameter system on the surfaces (Figure 4.7]. This

approach is similar to that used in Chapter 2 to acquire 3D

surface data by physically projecting an actual grid. Here

the projection is done to surface models in a data base.

The projected parameter coordinate system is usually defined

by a plane, and the projection is orthographic [Figure

4.7(a)], or perspective [Figure 4.7(b)]. Alternatively, the

parameter coordinate system could be defined by a spherical

or cylindrical surface surrounding the surfaces to be param-

etrized. In addition to reparametrizing parametric sur-

faces, this method can also be used to parametrize a surface

defined only by an algebraic representation.

This procedure defines a 2D parameter coordinate system

P(u,v,w) in a 3D object coordinate system O(xy,z,w). At

sampling distances Au and Av in the plane, rays are cast

from the plane to the surfaces; the first intersection of a
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Figure 4.7 Surface merging by reparaxnetrization: a param-
eter coordinate system is projected on sur-
faces with (a) orthographic projection, (b)
perspective projection
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ray with a surface then becomes a control point on the newly
JI

parametrized surface. If overlapping surface segments are

being merged, then the nearest intersections of a ray and

the different segments, which are within a given tolerance,!I
are averaged into a single intersection point. The inter-

section point of a ray at h(u,v) is connected to the inter-

section points found by the four adjacent rays at li(u+ Au),

.(u-Au,v), h(u,v+Av), and hR(u,v- Av). The algorithm,

therefore, defines the usual bivariate network of 3D points,

which is subsequently converted into a quadtree of composite

bicubic patches:

(4.37)

QrcJr merge-parametrize;
begin
makeprojection (plane);
for v := Vmin t Av until Vmax do

bein
for u := Umin =9 Au until Umax do

begin
makeray(ray(u,v),plane);
intersect (ray (u,v) ,G, point (u,v));
connect (point (u,v) ,point (u- Au,v));
connect (point (u, v) point (u, v-Av));

-2 end;
return

The algorithm is illustrated in Figure 4.8(a-c). A sphere

[Figure 4.8(a)] is parametrized by orthographic projection

(Figure 4.8(b)], and perspective projection [Figure 4.8(c)]

of a planar parameter coordinate system. There arc 32 x 32

sample rays cast from the projection plane to the sphere.
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N

Ui

(c) (d)

Figure 4.8 Parametrization of a sphere with a projected
parameter system: (a) image of a sphere, (b)
orthographic projection, (c) perspective pro-
jection, (d) closed parametric representation
from orthographic projection
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Algorithm (4.37) processes only the surface points

nearest to the projected plane along a sample ray. For a

solid object, as shown in Figure 4.8(b-c), it generates a

parametric surface network of only the nearest surface sec-

tions facing the projection plane. However, the algorithm

can be modified to produce a closed parametric network of

the complete object. First, all intersections of a ray and

the surfaces of a solid object are computed. There must be

2 S such intersections where S is the number of line seg-

ments of a ray inside the object. Intersection points where

a ray is tangential to a surface, and only one intersection

point is found, are eliminated by testing the surface-normal

vector, N, at the point of intersection. If R is nearly or-

thogonal, within a tolerance, to the ray then the intersec-

tion is deleted. Intersections of overlapping surface seg-

ments are again averaged into a single intersection. The 4

second modification of algorithm (4.37) affects the creation

of connections of the intersection points located by adja-

cent rays: if a point on an adjacent ray is closer to the

current point than the next point on the current ray then it

is connected to the current point; otherwise, the next

point on the current ray is connected to the current point.

A closed network of 3D points is created by the new algo-

rithm, assuming that the object does not have any extrusions

or protrusions thinner than the sampling distances Au and

Av:

124



(4.38)

-ceur mergeclose;
begin
makeprojection (plane);
.LQ. v :- Vmin s Av unti Vmax 

begin
0 jo u := umin s Au until Umax o

bein
makeray (ray (u, v) ,plane);
intersect (ray (u,v) ,Gpoint (u,v, s) ,N (s) ,S2);
delete(ray(u,v),point(u,v,s),N(s),S2,0.010);
-f s := 1 2.& 2 until S2 do

bein
if Ipoint(u,v,s)-point(u,v,s+l) I>

Ipoint(u,v,s)-point(u-Au,v,s) I t
bein
connect(point(u,v,s),point(u- Au,v,s));
connect (point (u,v,s+1) ,point (u- Au,v,s+1));
&ad;

connect (point (uv, s), point (uv,s+l));
j"" Ipoint(u,v,s)-point(u,v,s+l) I>

Ipoint(u,v,s)-point(u,v-Av, s+l) I then

connect(point(u,v,s),point(u,v- Av,s));
connect (point (u, v, s+l),point (u, v- Av, s+l));,: nd;

connect (point (u, v, s) point (u, v, s+l));

.- ud

" return;
• " ","me d;

- A closed network of 3D points of a sphere [Figure 4.8(a)],

generated by this algorithm, is shown in Figure 4.8 (d).

.. There are again 32 x 32 sample rays cast from the param .ter

plane.

The previous algorithm (4.38) generated a closed

network of 3D surface points of a solid object. While the

surface sections approximately parallel to the projection
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plane were closely sampled (with distances of adjacent

points on the order of Au or Av), the surface sections ap-

proximately orthogonal to the projected plane were coarsely

sampled. An improved algorithm samples the object by rays

projected from three mutually orthogonal planes [Figure

4.9]. For each projection plane only the intersection

points, where the angular difference between a ray and one

of the components of the surface-normal vector is less than

45 degrees, are retained. They are connected to the

corresponding points found by the adjacent rays, as in algo-..

rithm (4.37), and form disjoint networks. After these

networks have been obtained for all three planes, they are

connected into a single network by joining points in differ-

ent networks within the sampling distance:

(4.39)

Mrocedure merge-orthogonal;
begin
for p := 1 step I until 3 do

make-projection (plane (p));
for v := vmin(p) &t Av until Vmax(P) d

bein
for u := umin(P) A Au until umax(p) do

make-ray (ray (u, v), plane (p));
intersect(ray(uv) ,Gpoint(u,v,s),N(s),S2);
delete (ray(u,v) ,point (uv,s) ,N (s) ,S2,0.707);
for s := 1 ste 2 until S2 do

connect(point(u,v,s),point(u- Au,v,s));
connect(point(u,v,s),point(u,v- Av,s));
connect (point (u, v, s+l),

point(u- Au,v,s+l));
connect (point (u, v, s+l),

point (u,v-Av,s+l))
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create_networks (point);
return

This approach is illustrated with a sphere [Figure 4.8(a)]

in Figure 4.10. The three orthogonal planes are projected

to generate the top and bottom [Figure 4.10(a)], front and

back [Figure 4.10(b)], and left and right (Figure 4.10(c)]

networks which are then connected into a single network

[Figure 4.10(d)]. There were 24 x 24 sample rays cast from

each projection plane.

The last two algorithms (4.38 and 4.39) can produce

degenerate surface regions bounded by three or six parame-

tric curves. Such regions need to be specially processed

when the parametrized surface is being converted into

topologically rectangular patches. A region bounded by

three curves is handled as a degenerate, topologically

triangular patch. A region bounded by six curves is split

into two topologically rectangular patches.

In order that algorithms (4.37-39) generate 3D surface

data consistent with the data provided by the photo-

grammetric reconstruction method [Section 2.4], the sur-

face-normal vector is computed at each control point of a

parametric network. Normal vectors of the surface of a sol-

id object are oriented to the outside of the object, normal
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(a) (b)

I

I"

(c) (d)

Figure 4.10 Parametrization of sphere by three orthogonal
parameter coordinate systems: (a) top and
bottom, (b) front and back, (c) left and right
networks, (d) all networks connected
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vectors of other surfaces are oriented towards the pro-

jection plane.

4.4.3 Conversion to Polyhedra

The last merging algorithm converts either a set of o-

verlapping surface segments or a single surface description,

both of which enclose a solid object, into a volume repre-

sentation made of parallel parallelepipeds. The algorithm

partitions the object into parallelepipeds by intersecting

parallel rays cast from a projection plane with the surfaces

of the object. All intersections of a ray with the object

are computed as in algorithm (4.38). Each line segment of a

ray inside the object defines a parallelepiped centered a-

round the segment with a Au x Av cross-section [Figure

4.11]• -:

(4.40)

2 merge-solid;

make-projection (plane);foU v := Vmin+Aiv/2 &t& Av until Vma x do
begin

fr u := umin+ Au/2 = Au until Umax do
begin
makeray(ray(u,v) ,plane);
intersect (ray (uv) ,G, point (u,v, s) ,N (s),S2);
for s := 1 Step 2 until S2 d2

begin
parallelepiped (point (u,v,s),point(u,v,s+l),

u, Au, v, Av,N (s) ,N (s+l));
Bad;

gad;
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Figure 4.11 Merging of surfaces of a solid object and
conversion into rectangular parallelepipeds
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return;

The algorithm evaluates the surface-normal vector at each

intersection of a ray with the object and attaches it to the

parallelepiped. The normal vector is oriented to the out-

side of the solid. This representation of a solid object is

further converted into the octree representation [44J to

allow efficient analysis and shaded display.

This algorithm is illustrated with a sphere in Figure

4.12. The line segments of 16 x 16 sample rays inside the

sphere are shown in Figure 4.12(a). The 16 x 16 completed

parallelepipeds are shown in Figure 4.12(b). These paral-

lelepipeds, converted to an octree at 16 x 16 x 16 cube *1

resolution, are shown as a shaded image in Figure 4.12(c).

The shading is computed with surface-normal vectors gener-

ated by the conversion algorithm (4.40) from the algebraical

representation of the sphere and attached to each cube. A

higher-resolution octree representation of the sphere, at 64

x 64 x 64 cubes, is shown in Figure 4.12(d).

The advantages of using an analytical model with a pa-

rametric or algebraic surface representation and converting

it to a polyhedra representation are: (a) the analytical -

model is more compact, (b) arbitrary precision of the

conversion is available, and (c) analysis and display of the

polyhedra model are usually faster.
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(a) (b)

(c) (d)

Figure 4.12 Representation of a sphere by parallelepi-
peds: (a) inside ray segments (16 x 16 rays),
(b) completed parallelepipeds (16 x 16 paral-

lelepipeds), (c) low-resolution octree (16 x

16 x 16 cubes), (d) higher-resolution octreeI
(64 x 64 x 64 cubes)
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4.5 Applications of the MatchinQ AlQorithm.

This section describes applications of the matching al-

gorithm to these tasks: (1) surface matching to build com-

plete models of objects from surface segments, (2) surface

recognition by matching a surface description with a set of

objects in a library of objects, and (3) surface matching to

segment an object into surface or volume primitives.

4.5.1 Obiect Modeling

Using the surface acquisition method developed in Chap-

ter 2 and the surface matching and merging techniques

developed in this chapter we assemble complete models of the

measured objects. Each modeled object is measured in a

number of stable positions; in each stable position it is

illuminated in several parameter positions; in each stable

and parameter position it is photographed from two or more

camera positions. The set of K stable positions in which an

object is photographed is denoted by:

O(x,y,z,w) I , .. , O(x,y,z,w)k, .. , C(x,y,z,w) K.

In a stable position Jj the object is photographed in Jk pa-

rameter positions denoted by:

P(u,v,w)l , ., P(u,v,w)j , .,PuvwJk.

Furthermore, in stable position k and parameter position j

the object is photographed from 'j,k camera positions,
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denoted by:

U Q(r,s,w)l,j,k, .. , Q(r,s,w)i,j,k , .. , Q(r,s,w)ijk,j,k.

. The total number of parameter positions, J, and the total

number of images, I, are given by:

* K K J
"" J i= Jk' and I = j,k (4.41)

k=l k=l j=l

In each parameter position . there is a 3D surface segment

reconstructed from Ijk images. All surface segments, given

* -in the same stable position k, are directly merged into a

single surface segment. These merged surface segments are

*' then sequentially matched and merged into the complete mod-

el. The matching procedure (4.21) is set to the "partially-

overlapping-surfaces" mode [Section 4.2] to match surface

segments of the same object. Normally, the surface segments

-being matched are assumed to have been obtained from differ-

* ent stable positions of the object, and the algorithm uses

six active transformation parameters - tx, y, rEx, r,-

rz - of the general transformation (4.1). However, if there

is A priori knowledge that the segments were obtained from

the same stable position of the object then the algorithm

uses only three active parameters - tx, t.y, rz - of the

limited transformation (4.2). When all surface segments of

- a solid object have been matched they are merged into a

single surface description with algorithm (4.39) and a vol-

ume description with algorithm (4.40). The entire modeling
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process is outlined in the following algorithm:

(4.42)

procedure model;
begin
f&M k := 1 AIti. 1 until K d°

begin
Ufr j := 1 s_te 1 unitil Jk obegin
for i :- 1 step 1 until Ij,k

obtain surface information from image Qi j,k;

reconstruct surface segment j;
-f j > 1 then

merge surface segments j and j-1 into j;". enDd;
if k > 1 the

begin
match surface segments k-i and j;
merge surface segments k-1 and j into k;end;

else
begin _

assign surface segment j to k; -
And;

end;. .
merge-orthogonal;
merge-solid;
return;
end;

Experimental results of this modeling process are illus-

trated in Chapter 6.

4.5.2 Surface Recognition

The next proposed application of the matching algorithm

is to surface recognition. Here, the algorithm matches a 3D

surface segment of an object obtained from a single vantage

point with 4 set of complete models stored in a data base.
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The purpose of such matching is (1) to identify the object,

and (2) to determine its orientation. The data base, where

models are stored, is organized as a single surface graph

[Chapter 3], which is partitioned into groups of similar ob-

jects using the relational-connection nodes (Section 3.21.

Once the recognizing procedure determines that a partition

of objects may contain the surface segment, it visits all

the objects within the partition and attempts to match them

with the segment. The matching algorithm operates in the

"completely-overlapping-surfaces" mode [Section 4.2] and

uses the general 3D transformation (4.1):

(4.43)

procedure recognize (SEGMENT,LIBRARY);

visit the next partition R-node in LIBRARY;
if not found ±he reur (fail);
if PARTITION similar to SEGMENT then

begin
visit each OBJECT in PARTITION;
if match(OBJECT,SEGMENT,T) then return(T);

-- end;
-~ .7recognize (SEGMENT, R-node);"-. return (fail) ;

" -.. end;

This approach generates the orientation of the complete ob-

* .ject from the surface segment, and is, therefore, pertinent

to the 3D manipulation of the actual object.

4.5.3 Surface and Volume Segmentation

The last proposed application of the matching algorithm
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is to object segmentation. It is often necessary to segment

a 3D numerical surface model into sections that have common

shape features or other geometric properties before high-

level tasks can use such a model. It is also desirable to

find structure relationships among these segmented sections.

There are two approaches to the segmentation process

described here.

In the first approach, the 3D models are segmented into

surface primitives. A surface primitive is designed from

one or more surface elements of any available surface repre-

sentation. It should contain meaningful shape properties of

the model that is to be segmented. The primitives are

designed at a standard orientation and scale. The evalu-

ation points, where the shape difference (4.16) between the

primitive and a model is to be computed, can be selected at

this stage. The matching algorithm then matches the

designed primitives with the model. The algorithm uses the

tcompletely-overlapping-surfaces" mode and the general 3D

transformation. Since the primitives are specified at a

standard scale, the matching algorithm must also use scale

factors as active transformation parameters, i.e., the

transformation is not truly rigid anymore. The primitives

are processed according to their priorities; when a match

of a primitive and a model is found the surface of the

primitive is deleted from the model and the process is

repeated with the same primitive until a match cannot be
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found, then the next primitive is processed:

(4.44)

-. cjar segmentsurface(SURFACEPRIMITIVE,PmaxOBJECT);
beinfrr p := 1 1g 1 until Pmax d

* begin
while match (OBJECT,SURFACEPRIMITIVE (p) ,T) Ao

bein
delete (OBJECT,SURFACE_PRIMITIVE (p) ,T);
output (SURFACE_PRIMITIVE (p) ,T);

[-[ return;

_ A union of the segmented primitives constitutes the

surface model of the object.

In the second approach, surface models of solid objects

p are segmented into volumetric primitives. A volumetric

primitive is designed as a union of one or more surface ele-

ments which completely enclose a 3D space. The matching al-

*. gorithm spatially registers the surfaces of the primitive

with the surfaces of the object. At each evaluation point

of a primitive, the half-space (inside or outside), where

surface difference (4.16) is to be computed, is specified.

Therefore, a volumetric primitive can be spatially register-

ed to (a) enclose completely, (b) be enclosed completely,

(c) be completely outside, or (d) be partially outside the I

solid object. The union, intersection, and difference set

operators can be used to construct a CSG tree [Section 3.2]

La from the segmented primitives. The matching algorithm uses

the "partially-overlapping-surfaces" mode and the general 3D
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transformation with scale factors. The volume-segmentation p
process is similar to algorithm (4.44):

(4.45)

procedue segment_volume (VOLUME_PRIMITIVE, Pmax'°
SOLIDOBJECT);

bein
CSG_TREE := empty;
fo p := 1 step 1 utl Pmax o2

bein
*jhile match (SOLIDOBJECT,VOLUMEPRIMITIVE(p),T) _d2

be-in
delete (SOLID_OBJECT,VOLUME_PRIMITIVE (p) ,T);
interference (VOLUME_PRIMITIVE (p),T,SOLID_OBJECT,

operator);
attach(VOLUME_PRIMITIVE(p),T,operator,CSG_TREE);
And;

. eind;
retur n(CSG_TREE);

The union-set operator is applied to primitives com-

pletely inside the solid; the intersection operator is

applied to primitives partially inside the solid; and the

difference operator is applied to primitives completely

outside the solid.

4.6 Illustrations

The first example illustrates the matching algorithm by

matching two surface segments [Figure 4.13]. Surface seg-

ment G, is defined in object coordinate system O(xy,zw)1

[Figure 4.13(a)], and surface segment G2 is defined in ob-
a2

ject coordinate system O(x,y,z,w)2 [Figure 4.13(b)]. Sur- -

face segment G1 has been spatially registered with surface
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(a) (b)

(c)

Figure 4.13 Surface matching: (a) surface segment Gk in
0(O'yo'zIw) k, (b) surface segment GkI in
O(x#'y"zpw)kI, (c) matched surface segments Gk
and Gk' in O(x,y,z,w)k'
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segment G2 and transformed to O(x,y,z,w)2 [Figure 4.13(c)].

The rigid 3D transformation which aligned the two segments

is:

0.235 0.199 -0.323 15.817

0.723 0.213 0.658 15.043
T{o01-> 2 }  (4.46)

0.650 -0.532 -0.542 69.560

0.000 0.000 0.000 1.000

The matching algorithm generated 168 start nodes by aligning

surface normal vectors in 9 bounding volumes of G1 with sur-

face normal vectors in 6 bounding volumes of G2 . These

start nodes were expanded into 449 nodes before the solution

was found.

The next example illustrates merging of surface seg-

ments using the second merging algorithm which projects a

new parameter coordinate system [Figure 4.14]. There are

three surface segments, GI, G2 , and G3 , defined in the same

object coordinate system O(x,y,zpw)1 , and three different

parameter coordinate systems P(u,v,w)l,1 , P(u,v,w)2 ,1 , and

P(u,v,w)3 ,1 [Figure 4.14(a)]. A square (Au = Av) parame-

ter coordinate system was projected on these segments with

orthographic projection resulting in a single surface seg-

ment [Figure 4.14(b)].

The last example illustrates the merging algorithm

(4.40) which converts a surface representation of a solid

object into a volume representation [Figure 4.15]. The sur-
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(a)

- (b)

Figure 4.14 Surface merging: (a) three surface segments
parametrized by three parameter coordinate
systems, (b) reparametrized into a single pa-
rameter coordinate system
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(a) (b)

Figure 4.15 Conversion of representation of a J79 turbine
blade to (a) parallelepipeds, (b) octree
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face model of the J79 turbine blade [Figures 3.10, 3.11 and

• -3.151 was partitioned into parallelepiped volumes by inter-

secting the model with orthogonally projected rays. A

sampling resolution of 40 x 160 rays converted the blade

into 2706 parallelepipeds. The line segments of each ray

inside the blade are shown in Figure 4.15(a). The parallel-

epipeds were further converted into the octree representa-

tion. The octree model shown in Figure 4.15(b) contains

35808 nodes, of which 6132 nodes are full. The shading was

computed using the surface-normal vectors obtained from the

analytical model.

4.7 Summary

* . A surface matching algorithm which spatially registers

3D surfaces was described in this chapter. The algorithm,

in conjuction with several merging algorithms, is used to

assemble complete models of 3D objects from their multiple

surface segments. This process is illustrated in Chapter 6.

Suggested modification of this algorithm for object

recognition, or surface and volume segmentation were also

presented.
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CHAPTER 5

EXPERIMENTAL METHODS

This chapter describes the hardware used and the

software developed, in the course of this work, to generate

the illustrative examples shown in the three previous chap-

ters and the complete models that will appear in the next

chapter.

5.1 Hardware

The photogrammetric process, described in this report,

required a camera calibration stand, a projector, a ci.,era

and a film scanner. A camera calibration stand w-s built

from three sheets of glass placed perpendicularly to each

other. The glass sheets defined the object coordinate sys-

tem O(x,y,z,w), in which all surfaces were measured. There

were ten 30 x 30 mm calibration marks placed in the stand,

five each in the x = 0 and y = 0 planes, all clearly visible

to the camera. The corners of these marks were detected in

the generated images and used to compute the camera trans-

formation matrices T{O->Q}. The size of the stand and the

placement of the marks allowed measurement of objects up to

300 x 300 x 300 mm in size. A 35 mm slide projector illumi-

nated the camera calibration stand with a pattern of isopa-
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rametric lines defined in a parameter coordinate system 0
P(u,v,w). The pattern was recorded by a photo-densitometer

on a 35 mm slide. There are five 20-micron wide lines per

mm in both U and y directions of the pattern. These lines
n

cover only a 20 x 20 mm area of the 24 x 36 mm slide to

allow normal illumination of the camera calibration marks.

A 35 mm camera with a 55 mm focal-length lens was used to

photograph the measured surfaces on a high-contrast, black-

and-white film with high resolving power. These images were

digitized, in Q(r,s,w) image coordinate systems, by the

photo-densitometer which sampled the film at 20-micron

intervals (50 samples per m n) in both L and _q directions. A

16-bit film density value was obtained at each sampled

point. In these images, all the relevant information (illu-

minated surfaces and calibration marks) is contained within

a 24 x 30 mm area of the 24 x 36 mm image frame. This means

that each image was digitized to a 1200 x 1500 16-bit pixel

resolution.

All the data processing was done by a 32-bit

midi-computer with (what appears to be at this time) a

virtually unlimited virtual memory and a large disk space.

A vector drawing and a color raster terminals were used for

display of graphical and image data generated by this work.

The vector drawing terminal can display up to 8000 2D

vectors or 5500 3D vectors from its refresh memory. Ortho-

graphic projections of the 3D vectors, following scale, ro-
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tation and translation transformations, are computed by the
p .,

terminal in real time, using special hardware. A 3D surface

description can thus be displayed while smoothly "tumbling"

on the screen, thereby increasing the viewer's perception of

its 3D shape. A hard copy of the image displayed on the

screen can be made by an electrostatic printer-plotter with

resolution of about 8 binary dots per mm (see, for example,

Figures 3.8, 3.10, and 3.12). The raster terminal displays

a digital color image from a 512 x 512 x 24 bit frame

buffer. It was used here to display windows in the

digitized black-and-white images of the measured surfaces as

well as synthetic images computed from the 3D surface mod-

els. Although the synthetic images cannot be computed in

real time, the viewer's perception of the 3D scene shown in

a single frame can be augmented by the use of color shading,

shadows and textures. A black-and-white and a color hard-

copy units are attached to this terminal (see, for example,

Figures 3.9, 3.11, 3.13).

5.2 Software

In addition to the development of the surface modeling

process, an important secondary goal of this work was that

the design and implementation of the process be achieved

with good-quality software. There were two key objectives .

in designing the software:
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(1) fxility - to allow easy modification and

expansion, since the system is primarily experimen-

tal; and

(2) usabiity- to allow large quantities of various
K

types of data to be processed without increased

effort.

The software was implemented as four command proc-

S.essors. The first three processors contain the modeling

procedures described in Chapters 2, 3, and 4, respectively.

The fourth processor computes synthetic images from 3D sur-

face data generated by the modeling process and from

additional parameters which enhance the 3D scene (light il-

lumination, shadows, textures), and define the viewing

camera and its optical system.

" - A command processor is an interactive software program

which allows a user to enter, process, and store data with a

set of commands and their parameters. It creates its own

software environment, which is required for the given

application and is separate from the operating system.

Unlike an ordinary program which has its pre-defined input,

processing, and output parts, a command processor can

execute a flexible sequence of commands appropriate for the

data being processed. In the context of olar experimental

systems, it permits us to display the results of each

computational step, and if necessary to repeat the step with

different parameters.

149



The implemented processors' names and tasks are as

follows:

SUR- reconstructs 3D surface descriptions from

multiple images of the surface illuminated by iso-

parametric lines;

JSUD~ - converts 3D surface descriptions into hier-

archical representations, enters and edits sur-

faces, and attaches surface properties;

ALIGN - aligns two surface representations into a

common 3D object coordinate space, and optionally

merges parametric surface representations into a

common 2D parameter coordinate space;

STRAW- generates shaded synthetic images of sur- 4

face descriptions.

The primary motivations in the software design are

listed below:

(a) Common data structures

There is a single definition of all the data struc-

tures and parameters within each processor; this -

definition applies to all the routines in the proc-

essor. When a new routine is added to a processor 7

the data base definitions are simply inserted into

the new module. Because the processors pass data

in the same format to each other, there are large

parts of the data structures also shared among dif-

ferent processors.
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(b) Uniform storage and access of data files

SA data-base management system [55] was developed to

maintain all the types of data used in this work,

from monochrome and color images to structured mod-

els of 3D objects, in hierarchically structured

files. Redundant input-output processing and

routines are eliminated by maintenance of all the

data in a processor's data structures, and by the

use of a single input and output routine in each

processor, respectively.

(c) Command environment with common syntax and an ab-

breviation facility

There is common table-driven, command-handling

facility in all the processors ;hich prompts for

S .commands, parses them, executes them, and handles

syntax errors. Each processor contains a separate

control table which contains its prompting strings,

commands, keywords, and parameter lists.

Another table in each processor contains symbolic

names of data in the processor's data structures.

An entry in this table consists of a symbolic name,

the data type, and a pointer to the data. Each

data item, as it is loaded from a file, generated

by a processor, or entered by a command, is given a
* symbolic name that is used to refer to it in sub-

L..

sequent commands.
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An abbreviation facility [55], common to all the P

processors, allows every non-numeric string to be

abbreviated to the leading non-ambiguous substring.

The abbreviation facility uniformly applies to all

command names, keywords, directory and file names,

and symbolic data identifiers.

(d) Modularized software development

The developed software modules are grouped into

these categories:

(1) control modules - control execution of a proc-

essor, contain command processing;

(2) execution modules - execute data processing

commands;

(3) utility modules - provide various utility func-

tions of a processor;

(4) image processing modules - form a library of

routines for access and operations on 2D image

datal;

(5) geometrical processing modules - form a library

of routines for access and operations on 2D or 3D

geometrical data;

(6) input-output modules- interface to the data-

base management subsystem.

The following sections describe the individual command

processors and any associated software in more detail;

Appendix D contains the syntax of the actual commands.
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5.2.1 Processor SURE

SURE is the Urface-Leconstruction processor. It

implements the techniques described in Chapter 2. The input

to this processor is a set of digitized images of the

measured surfaces. The surfaces in all such images are in

the same object coordinate system O(x,y,z,w)k and are param-

etrized by the same parametric coordinate system P(u,v,w)

The output of the processor is a list of reconstructed

control points or boundary curves of parametric patches.

This list is passed to the surface editor for conversion of

the surface information to surface patches, and hierarchical

structuring to surface quadtrees. The individual commands

of this command procestor are listed in Appendix D.I.

5.2.2 Processor SUED

SUED is the surface editor. Its main task is to

convert a list of unstructured patch control points or

boundary curves into a structured quadtree of patches,

bounding volumes and normal vectors, which can be used by

the surface-alignment process. In addition, other surface

representations (planar, quadric as well as bicubic) can be

entered by SUED commands into its data base. These repre-

sentations can later be used as 3D shape primitives in the

alignment process. Various surface attributes can be
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specified for each surface element although only reflection --

and transmission coefficients, and texture functions are

useful at the present time. SUED generates a structured

surface file which can be used either in surface alignment

or in generation of synthetic images. The commands of this

processor are described in Appendix D.2.

5.2.3 Processor ALIGN

ALIGN is a processor which performs the 3D ali ment of

surface descriptions, using the matching and merging algo-

rithms given in Chapter 4. Two surface descriptions are

spatially registered with algorithm (4.21). If the two sur-

faces are segments of an object they are merged into a

single parameter coordinate system following the spatial

registration. After the two surface descriptions have been

matched, and possibly merged, they are returned back to SUED

as a linear list of surface patches. SUED then restructures

them into a single hierarchical description. ALIGN also

performs all the merging algorithms of Section 4.4: parame-

tric surfaces are merged by transformation of parameters;

algebraic and parametric surfaces are parametrized or repa-

rametrized by parameter projections; and surfaces of a sol-

id object are converted to a volume representation made of

parallelepipeds. A description of the individual commands

of this processor may be found in Appendix D.3.

154



5.2.4 Processor STRAW

* STRAW is a processor which paints pretty pictures in

highly non-linear time. It renders images of complex 3D

scenes with surface-to-surface reflections, transparent sur-

faces with refractions, diffuse and specular reflections,

image and texture surface mappings, illumination by point-

light sources and shadows. STRAW uses a ray-tracing algo-

rithm to compute visible surfaces and a recursive shading

algorithm, developed by Whitted 172], to compute light

intensity of the visible surfaces.

A. raster image computed by this program is considered

m to be an array of square or rectangular pixels. The 3D

sce'Re is sampled at the four corner points of each pixel.

In perspective projection a 3D sample ray from an image

sample point to the center of projection is extended into

the scene and intersected with the nearest surface element.

- In orthographic projection each 3D sample ray is perpendicu-

lar to the image plane. The intensity of the sample point

q. is evaluated from visual properties of the intersected sur-

face element as well as from intensity information provided

by additional rays which are bounced from the intersection

point in the reflection, refraction, and light-source

directions. Information about each reflected and refracted

ray is maintained in a node of a binary shading tree.
L.J

Finally, the intensity of a pixel is computed by averaging
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its four sample values. Anti-aliasing is performed by _

recursively subdividing a pixel, which has a large differ-

ence in its sampled values, into 2 x 2 regions and repeating

the sampling process at the four corners of each new region.

The intensity of each region is again the average of its

four samples and the final intensity of the pixel is the sum

of all regional intensities, each weighted by its area.

This subdivision is done only within pixels which contain

sharp intensity changes, typically caused by edges, silhou-

ettes or textures.

STRAW operates on the structured surface descriptions

provided by SUED. The ambient intensity, i.e., the color of

a surface element can be specified as a constant value (Fig-

ure 5.1(a)], the parameters u, v of the element can be used

to look up the value in a color image [Figure 5.1(c,d)], or

the value can be computed by linear interpolation of colors

along 3D vectors stored in a paint table [Figure 5.1(b)]. A

texture can be added to a surface element with Blinn's

texturing technique (12]. This technique perturbs the

normal vector to a surface point in a direction specified by

the partial derivatives of a 2D texture function. Here, the

source of the texture function is a monochrome image and the -

parameters _q, y of a surface element are used to look up

values in the image from which the partial derivatives are

computed. This texturing is quite effective; however, it

remains only a shading illusion - the silhouettes of sur-
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(a) (b)

* St

(c) (d)

Figure 5.1 Examples of synthetic images generated by
STRAW: (a) Microtubular doublet, (b) IPL logo,
(c) Recursive box, (d) Galaxy far far away
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faces are still smooth and the textures cannot cast shadows.

In addition to generating a raster image with a pin-

hole camera model, STRAW can optionally save information

about each image sample point from the nodes of its shading

tree. These sample points may be later converted into an

actual raster image by a post-processor. A post-processor,

FOCUS, was designed to implement the focus and aperture

functions of a camera's lens (57,58]. It generates synthet-

ic images which are focused and have a depth of field [Fig-

ures 5.2-3]. For each image sample point, this post-proc- N-l

essor computes a point-spread function whose size and

intensity distribution depend on the sample's depth (i.e.,

the distance of the visible surface along the camera's

optical axis), the focus distance of the lens, and the

aperture size. The point-spread function is then convolved

with the sample point in the spatial domain. Since FOCUS

has available information about each ray in each shading

tree, it can properly defocus reflected [Figure 5.2] and

refracted (Figure 5.3] rays of light. A post-processor,

BLUR, adds motion blur [59], due to a finite exposure time

of real cameras, to moving surfaces [Figure 5.4]. This is

accomplished by convolving all image samples which belong to

a moving surface with a point-spread function computed from

the path and velocity of the motion, and the duration of the

exposure. This convolution can be performed equally well in _*

the spatial or the frequency domain.
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(a) (b)

Figure 5.3 Transparent carafe (a) made with pin-hole
camera model, (b) focused on the carafe and
aperture set to f/l.4
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.(b)

Figure 5.4 Spheres falling on a parabolic path: (a) made
with pin-hole camera model, (b) made with
motion-blur camera model
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Solid objects can be converted by STRAW to the paral-

lelepiped representation (Section 4.4.3) with algorithm

(4.40). The line segments inside a solid object of each

ray, cast by the orthographic projection, are determined by
mI

the ray-tracing traversal procedure. The surface ambient

intensity, and the surface-normal vector, oriented to the

outside of the object, are evaluated at both ends of each

line segment. The ambient intensity may be a constant, im-

age, or paint-table value; the surface-normal vector may be

perturbed by a texture function. This description of solid

objects is passed to an octree modeling system [44], which

converts it to octree representation for efficient analysis

and display.

STRAW has also been successfully used to generate

stereo pairs of images that can be viewed as transparencies

in a stereo viewer. Command STEREO, given a vantage point,

a view point and a stereo separation angle, computes the

complementary vantage point. Any part of the STRAW data

base may be modified between the generation of consecutive

image frames that may be used in an animated sequence. This

allows, for example, movement of the camera, lights, and

surfaces as well as modifications of surface shapes and

visual properties. The individual commands of this software

processor are listed in Appendix D.4.
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter contains, in the first section, an example

of building a complete computer model of a 3D object by the

photogrammetric reconstruction and the match-and-merge

alignment obtained from several stable positions of the ob-

ject. This example exercises the entire modeling process of

this work. The second section shows two symmetric objects

that were partially reconstructed by the photogrammetric

* procedure, and then completed into generalized cylinder-like

shapes with & priori knowledge of their symmetry. Each of

these two objects is modeled as a single sheet of surface

patches. All the examples given in this chapter contain

multi-curved surfaces.

6 .1 Car Mode

The first example demonstrates the entire modeling

process of obtaining a 3D description of an object. It is a

balsa model of a car meant for the late 1980's. The comput-

er model was computed from 36 views of the 3D object. The

object was positioned in six different object coordinate

°ystems O(x,y,z,w)1  to O(x,y,z,w)6. In each object coordi-

nate system O(x,y,z,w)k, it was consecutively illuminated by
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three parametric coordinate systems P(u,v,w)l,k to P(u,v,

w)3k. While illuminated by a parametric coordinate system

P(UVWj,k , two images Q(r,s,w)l,j,k and Q(rts,w)2,j,k were

recorded. The tree structure of this modeling process is

given in Figure 6.1 with I = 36, J = 18, and K = 6. Four

low-resolution (256 x 256 pixel) digital images of the

original object are shown in Figure 6.2. A proof (contact)

print of the 36 images is given in Figure 6.3. Each column

contains six images of the object in one stable position;

each pair of images within a row contains the object param-

etrized by the same parameter system. From the 36 images,

there were 18 3D surface segments reconstructed [Figure

6.4]. Since every three segments were defined in the same

object coordinate system, they were simply merged into the

same parametric coordinate system [Figure 6.5]. In this

figure, each drawing in the left column shows three surface

segments in O(x,yz,w)k before they were merged, and the

corresponding drawing in the right column shows the merged

surtace segment. Algorithm (4.37) was used to reparametrize

the surtace segments with orthographic projection and 5.0 mm

sampling distance. At last, the six merged surface aegments

were aligned into a common object coordinate system. This

alignment process consisted of five iterations; the coordi-

nate system of the first surface segment remained stationary

while the other five segments, one at a time, were matched

with the existing surface description [Figure 6.6]. Four
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UComplete model 0

*object system:1 2 6
O(X#,yfzfW)k k
K=6

Parameter system:
SP(utvtw)j~k js 1 2 3 16 17 18

J-18 hj /k

image system: O
Q~~~),~ s1 2 35 36

* . 1=36

Figure 6.1 Modeling tree for the car model example
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Figure 6.2 Four views of the modeled object: car model
(digital 256 x 256 pixel images)
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Figure 6.3 Proof print of 36 measured images of the car
model
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O(x,yoz,w) 1  O(xryfzrw) 0 O(X,y, z,w) 1

O~~~~)2, Ory z1w 2,2 0(yzw)2,3

Figure 6.4 Drawings of 18 reconstructed 3D surface seg-
ments
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O~~~ w 3,1  Oxyz) 3,2  Oxy w 3,3

O(x,,,w) 4, (X, Y,Z, W) 0 O(X,Y,Z, W)

Figure 6.4 (CONTINUED)
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O(x,y,zrw) 5, O(X, y,Z, W) O(x#,yfzow) 5

o xy~~)6,1 Oxyzw)6,2 0 xy ~)6,3

Figure 6.4 (CONTINUED)
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*0 - (x yZ W)

Figure 6.5 Surface segments of Figure 6.4 merged into six 01
segments
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O (xoy,zow) 3

Figure 6.5 (CONTINUED)
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O(X#ypzrw)6

Figure 6.5 (CONTINUED)
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%"A I

,,1

0 (X, y, Z, w)

Figure 6.6 Surface segments of Figure 6.5 aligned and .

merged into a complete car model
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i views of the aligned surface segments are shown in this fig-

ure together with the axes of the object coordinate system

of the first segment. A single surface model of the object

was therefore obtained, and structured into a hierarchical

description.

6.2 Symmetric Bottles

This example illustrates the reconstruction of two ob-

jects which are symmetric around an axis. Each of the ob-

jects- a wine carafe and a coke bottle - was measured in a

single object coordinate system O(x,y,z,w)1 , while param-

etrized with a single P(u,vpw)l I parametric coordinate sys-

tem, and photographed .n two image coordinate systems:

Q(r,s,w)l,l, and Q(r,s,w)2 ,1,1 . The section of each ob-

* iject, reconstructed from the two images, was then completed

into a generalized cylinder-like shape made of a single

sheet of bicubic patches. It was assumed that each object

had a circular cross-section in x-y planes. Intersection

curves of the reconstructed 3D section with x-y planes

equally spaced between the ground plane and the top of the

object were computed and circles were fitted into the curves

with a least-squares error method. Figure 6.7 shows

medium-resolution (512 x 256 pixel) digital images of the

original objects. Figures 6.8-6.11 show the results of this

modeling procedure. Figures 6.8 and 6.10 contain the two

175

.•,..... . . . .
- - - - - - - - - - - -- -- -- - - - - - - - - .... ... .... a A .. .'



(a) (b)

Figure 6.7 Modeled objects: (a) carafe, (b) bottle (dig-
ital 512 x 256 pixel images)
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(a) (b)

Figure 6.9 Carafe model: (a) quadtree of surface patches,
/ (b) synthetic image of surface patches
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original images of the parametrized objects. Figures 6.9(a)pl ,
and 6.11(a) are line drawings of the quadtree representa-

"' tions of the two objects and Figures 6.9(b) and 6.11(b) are

shaded synthetic images of the two models. The point-light

source in each of these images is placed approximately in

the same location at the lamp illuminating the original ob-

jects in Figure 6.7. Notice (or rather do not notice) the

loss of detail in the surface shape visible along the sil-

houette of each object. This is partially caused by the

-- resolution of the projected parameteric lines, and also due

to using circular cross-sections in the horizontal direction

and cubic spline in the the vertical direction of the ob-

jects. Figure 6.12 contains two images of these models

placed in a model of the camera calibration stand. The mod-

-" el of the carafe is also pictured in Figures 5.2, and 5.3.
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CHAPTER 7

RETROSPECTS AND PROSPECTS

This chapter summarizes the presented work, lists its

S.: major contributions and then proposes tasks for further

research.

7.1 Recapitulation

The main objective of this research was to investigate

techniques for computer generation and processing of three-

dimensional surface models of existing physical objects.

The obtained numerical models were to be reasonably precise,

*. complete, and hierarchicaly structured. Models of man-made

objects, applicable to both computer vision and CAD/CAM,

were of especial interest.

An image processing technique, which digitizes 3D sur-

faces in a controlled environment (position and illumination

of the surfaces), was developed to obtain 3D surface data

located on a 2D parametric grid. These data, computed

originally at a high resolution, are structured to provide

hierarchical surface descriptions. Depending upon the

specific amount of surface detail required, various levels

oM of the hierarchical structure are employed. A matching al-

gorithm uses these hierarchical representations to perform
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3D alignment of 3D surfaces which share common (overlapping)

sections.

A modeling process which assembles complete models of

arbitrarily-shaped 3D objects was developed from these

capabilities. Individual 3D descriptions of the surfaces of

the object are first obtained for different positions of a

parameter coordinate system and also for different position

of the object in its object coordinate system. The descrip-

tions, given in the same object system but different parame-

ter systems, are merged into a common parameter system.

Those descriptions, that are given in different object sys-

tems, are first spatially matched into a common object sys-

tern, and then merged into a common parameter system. If 3D

data covering all the surfaces of an object are available,

this process can iteratively build a single complete model.

The model representation developed here is versitile enough q-

to be directly used in a number of applications; it can

also be easily expanded and converted to other representa-

tions. Two immediate applications are (a) conversion to

octree representation for fast object analysis and display

(44], and (b) generation of characteristic views for object

recognition (17]. A single ray-tracing procedure provides

all required information about a surface description to all

application programs. All geometric operations which depend

on surface representation are confined to this procedure.

The surface and object models can have assigned reflec-
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tion, transmission, and texture characteristics, and be

viewed in computer-generated raster images. The circle of

computer graphics and image processing is then completed by

applying image processing techniques to these synthetic im-

ages. The inverse process of "image restoration," used in

image processing to remove noise from natural images, is

applied here to add noise, caused by the optical system of

the simulated camera, to the computer graphics images.

7.2 Contributions

The following may be considered as the major

* accomplishments of this work:

(1) Development of a 3D surface-data acquisition system

based on spatially-controlled illumination of the

measured surfaces in multiple photographic images;
reconstruction of surface information from 2D per-

spective projections into a 3D representation.

(2) Hierarchical structuring of the 3D surface repre-

sentation into surface quadtrees of varying levels

of detail.

(3) An algorithm for computing intersections of a 3D

line and a 3D bicubic parametric patch.

(4) Alignment of 3D surface descriptions based on sur-

face shape using heuristic search methods. Genera-

tion of numerical models of objects from aligned
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and merged surface descriptions.

(5) Design and implementation of a software system to

accomplish the above items and demonstration of its

performance using several modeling examples. -

(6) Design and implementation of a software system for

generation of synthetic images of the modeled ob-

jects; expansion of the pin-hole camera model p

traditionally used for generation of synthetic im-

ages to include several parameters of an actual

optical system such as focus, depth of field, and -

motion blur.

7.3 Sugqestions

The following is a list of suggestions for possible

continuation and expansion of the work presented here:

(1) Segmentation of 3D numerical object models into 3D

surface shape and volumetric primitives and top-

down structuring of these primitives.

(2) Matching of surface segments which do not overlap,

only share boundary curves, i.e., fragments of

broken pottery.

(3) Detection of 3D surface intersections and 3D sur-

face vertices (points where three or more surfaces

intersect) using 3D curvature search.

(4) Development of relational matching technique of 3D
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objects based on the data supplied by the modeling

process described here. Automatic conversion of

numerical representation into symbolic relations

and symbolic surface description.

(5) Expansion of the optical model of a camera's lens

to include special-effect filters (such as star ane

" ,>- diffraction), and noise caused by an optical sys

'. -,, tem.
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APPENDIX A

DEFINITION OF A BICUBIC PARAMETRIC PATCH

AND A SHEET OF PATCHES

This appendix discusses two methods of constructing bi-

cubic patches from the surface information provided by the

photogrammetric technique of Chapter 2, and the construction

of sheets of patches from individual but contiguous patches.

The first method interpolates a patch into the positional

coordinates of four control points, and achieves first-

derivative continuity (C1) across patch boundaries. The

i second method constructs a patch from its four boundary

curves; its continuity across patch boundaries depends on

the continuity of the boundary curves which is also C1 .

A bicubic patch is a cubic polynomial of two variables

(parameters) expressed, in matrix form, as:

-> (A. 1)

g (u, V) - u 3 u2 u 1] b11 b1 2 b.13 b1 4  v3  a

b21 b22 b2 3 b2 4  v2

b31 b32 b3 3 b34  v

-_b 41 b42 b43 b44 _ L 1 J

or, for short,

(A.2)

"g (u,V) 'a- VYt

where the domain of the parameters u, and y is the unit
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square: 0 < u, v 1 1. In equations (A.1-2) g(u,v) actually -

represents a component of the vector:

(A.3)

= y)(u,v)

Z~v Y(U, V).

There are several methods of computing the 16 coeffi-

cients of matrix B in equation (A.1), such as the Coons,

Ferguson, Bezier, Hermite, and B-spline methods
-J

[7,20,26,27]. The Ferguson method is useful for fitting a

patch or a set of patches into existing surface data points;

the Coons method fits patches into boundary curves, whereas

the other methods are more useful for interactive design of

a new surface. In all these methods, however, B has to be

always computed from 16 items of information about the sur-

face shape.

A Ferguson Patch (27] is constructed from surface data

of four control points as follows; let

(A. 4)

B=MH~t

where
(A.5)

2 -2 1 1

-3 3 -2 -1
M

0 0 1 0 -

1 0 0 0
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is a matrix of coefficients of blending functions, and

(A.6)

-. h(0,0) h(0,1) hv (0,0) hv (0,i)

h (1,0) h(1,1) hv (1,0) hv (1,1)

hu(0,0) hu(ol) huv(0,0) huv(0,1)

.
hu(1,0) hu(l,l) huv(1,0) huv(111)

provides the description of the surface data [Figure A.l(a)]

with the following short-hand notation:

dh(u,v)
hu (u,v) =

ud du :

dh(u,v)
hv(uv) = dv , and

d2h(u,v)
huv(u,v) =

du dvU

where h(u,v) is the positional coordinate of a control

point, hu(u,v) is the surface tangent in the direction of

the parametric curves .y = constant, hv(u,v) is the surface

tangent in the direction of the parametric curves u =

constant, and huv(u,v) is the surface cross-derivative or

twist. The values of hu(u,v), hv(u,v), and huv(u,v) can be

estimated by numerical-analysis methods 119] from the

positional data h(u,v) and adopted to our requirements as

IM follows:
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Figure A.1 (a) Bicubic parametric patch, (b) Parametric
space arnd composite parametric patches
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(A. 7)

h(u+Au,v) - h(u-Au,v)
hu (u, v) = ..

(A.8)
h(u,v+Av) - h(u,v-Av)

hv (u,v)
2Av

(A. 9)
[h(u+,Au,v+Av)-h(u-Au,v+ Av)] -
[h (u+ Au,v- Av)-h (u-Au,v-Av)]

huv(u,v) =4AuAv

In equations (A.7-8) above, the surface tangents were

computed as central differences; a better estimate of the

... tangents, yielding a smoother surface, is obtained from a

* iweighted average in a 3 x 3 point neighborhood:

(A.10)

[h (u+Au,v+ Av)+2h (u+ Au,v)+h (u+ Au,v-Av)] -
'h (u- Au, v+ Av)+2h (u- Au, v)+h (u- Au, v- Av)]

hu (u,v) =8.
~8Au

(A. 11)

[h(u+ Au,v+ Av)+2h(uv+ Av)+h(u-Au,v+ Av)] -

[h (u+.Au,v- Av)+2h (u,v- Av)+h(u- Au,v- Av) ]
-- hv (u,v) =

-- 8 8Av

In summary, a Ferguson patch is completely defined by I

h(u,v) hu(u,v) h (u,v) huv(u,v) ] evaluated at each of the

four corner control points of the patch and by the blending

coefficients of (A.5). For two adjacent patches to have

U positional and derivative continuities, they must share the
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surface data defined at their common control points.

A Coons patch [20] is constructed from four boundary

curves c(u,0), c(u,l), c(Ov), and c(l,v) [Figure A.l(a)] by

linear interpolation between the opposite pairs of

boundaries:

(A.12)

g(u,v) E (1-u) u [c(Ov)

E ((1-v) v] c )]

C (u, 1)

E[(1-u) ] [ u1(0,0) c(O,1 F (-v)

The four boundary curves in equation (A.12) can be

computed by the reconstruction method given in Appendix B.

Those curves have C1 continuities in their 2D projections as

well as in the 3D reconstructions. Therefore, a patch

constructed from such boundary curves will also have C1

continuity across its boundaries.

A sheet of comosite bicubic patches consists of a set

of contiguous patches with at least C1 continuity across

their boundaries. The patches in a sheet are parametrized

by a single parameter coordinate system P(u,v,w). This co-

ordinate system [Figure A.l(b)] contains two sets of orthog-

onal lines which define an integer square grid. These
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lines, mapped on 3D surfaces, become the patch boundary

n curves and their intersections become patch control points.

The lines define an absolute parameter coordinate system for

0 < U <, and 0 < v _ N, while within a single patch there

is a relative parameter coordinate system for 0 K _g, _ < 1.

Using the notation of the absolute parameter coordinate sys-

tern, a patch gm,n(uv) is defined by the four control points

h(m,n), h(m+l,n), h(m,n+l), and h(m+l,n+l), or by the four

boundary curves c(m,v), c(m+l,v), c(u,n), and c(u,n+l) for m

, a i M+l, and n < n+l.

:22
m2

--Our
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APPENDIX B

RECONSTRUCTION OF A PARAMETRIC CURVE

FROM MULTIPLE PROJECTIONS

In Section 2.3 we reconstructed 3D surface points from

multiple 2D perspective projections. These points were then

used as the control points for parametric patches. In this

appendix we develop an analogous method which reconstructs a

3D parametric space curve from its multiple 2D projections

[Figure B.1]. Such a curve can directly become one of the

four boundary curves of a surface patch.

A 3D cubic curve in an object coordinate system

O(x,y,z,l)k is specified by:

(B.1)

F cll C12 c13  c14

E(w)k = y(w) = c21  C2 2  c 2 3 c 2 4  w2

zL(w) k c 31  c 32 c 3 3 c34J. w

or, for short,

(B.2)

k= Ck W

Similarly, a 2D projection of this curve into an image

coordinate system Q(r,s,l) i is: *1
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(B. 3)

U Fr( 1  c1l c12  c23  c24 1(w) i(= ) w2S Lw) i c21  c2 2  c23  c 2 4 j

w

or, for short,

(B.4)

Z = Ci W

The mapping from the object coordinate system Ok to the 90

image coordinate system Qi is T{Ok-->Qi}. Each perspective

projection j of the 2D curve has two components: r(w) i, and

s(w)i; the 3D curve has three components: x(w)k, y(w)k,

and z(w)k. A component of a cubic curve is constructed from

four items of curve information. These are, typically, the

position coordinates of the two end points (h(),h(l)) and -

the slope of the curve at these points (hw(),hw(l)). Here,

h(w) refers to the positional coordinate of the curve at w,

and hw(w) refers to the slope of the curve at w. The param-

eter w is defined for 0 < w < 1.

A Ferguson curve, similar to a Ferguson patch of

Appendix A, is constructed from the curve information, and a

matrix of coefficients of blending functions:
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(B. 5)

c c(w) h C (0) h (1) h(0) h~ (1) 3 2 -3 0 1 w3

-2 30 0 w 2

1 -2 1 0w

U~ 1-1 00 1U

It is necessary to point out that the definition of the

parameter ji must be consistent in all projections j; that

is, a value of yL yields 2D projections of the same point in

_ 3D. The system of equations (2.3) can be now rewritten by

the substitution of x(w)k, y(w)k, z(w)k, r(w)i, and s(w)i

for xk, YkF zk, rt, and sio respectively, as:

rn (B.6)Ed.1 .1 (w) d(w) d1 3 (w) d14 (w) 1 X (w)

d (w) d2 (w d2 (w d2 (w) j y (w)
21 ~ ~~ (w))24w) 2

where d1 p(w) and d2 p(w) are defined by:

- (B.7)

d1p(w) =t 3p c11jw3 + cl2iw2 + cliw + cli tip

d2p(w) =t 3p c2liw3 + c22iw2 + c23 iw + )24 -~

for ,R 1,2,3,4.

Also, all q's and Lsin equation (B.7) apply to trans-
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formation i, and x(w), y(w), and z(w) are defined in

equation (B.l). We need to solve the system of equations in

(B.6) for the twelve coefficients of Ck given in (B.1). The

matrix elements of equation (B.7) and the vector elements of

equation (B.1) are multiplied in equation (B.6) and the co-

efficients of the curve (B.1) are factored out to give the

following system of two linear equations with twelve

unknowns:

(B.8)

L-dl l ( w)w3 dll(w)w2 ... d 1 3 (w)w dl 3 (w) ] Cll d1 4 (w)

d2 1(w)w
3 d2 2 (w)w

2 ... d2 3 (w)w d2 3 (w) c1 2  d 2 4 (w)

c33

L c34 _

Each of the two equations in (B.8) can be expanded into

four linearly independent equations by substituting four

linearly independent vectors W (values Wl, X2, R3, and X4)

for the parameter w, because the cubic basis vector W yields

four linearly independent vectors. Therefore, for a single

projection i there is a system of eight equations with

twelve unknowns, expressed as:
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(B. 9)

dillwl) ... dl ) Cd4

dll (w2 ) w3 d13 (w2 ) c12 d14 (w2 )

•.d21 (w3)w •3 .. d23 (w3 )  •. 24 (w3 )

3
d21(w4)w ... d2 3 (w4 ) ... d2 4 (w4 )

C3 3

_ c 3 4 _

-- or, for short,

(B.i0)

.- - t

In general, for I 2 2 projections, there is a system of

8-I equations of twelve unknowns:

(B. 11)

" BDi C '

L: DI _' L

System (B.11) is solved by the least-squares method

which yields:

(B.12)

Di D.1 1 t I
LDi LDJ i I i

DI DI 1 LI

This curve reconstruction method is particularly useful
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when the 2D projections of the curve are computed from in-

formation other then four position points, i.e., two end

points and two slopes as in equation (B.5), or when the

points in one projection cannot be matched with their corre-

sponding points in the other projections. This method can

be generalized to parametric curves with an arbitrary-order

basis vector W.
20
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APPENDIX C

SURFACE REPRESENTATIONS AND OPERATIONS

This appendix contains a summary of representations of

the four types of 3D surface elements (planar, spherical,

quadric, and bicubic) and the five basic geometric

operations (3D rigid transformation, surface-normal vector,

surface-normal curvature, intersection with 3D line, and

surface existence) on them. This is followed by individual

descriptions of the representations and the operations for

each type of surface elements.

C.1 Summary

C.1.1 Representations of Surface ElementsA

(C.1)

(a) algebraic: f(xyzw) =0

bounds: other algebraic representations

arranged in a boolean tree

(C.2)

(b) parametric: g(u,v) [x(u,v), y(u,v), z(u,v), w(u,v)]

bounds: limits on parameters _q and I
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C.1.2 Geometric Operations _

(a) transformation from object coordinate space O(x,y,z,w)k

to object coordinate space O(x,ylz,w)k , by T{Ok-4 Okl:

(C.3)

tll t12 t13  t14 "

t21  t22  t23  t24  -T({Ok-->O k ,}

t31  t32  t33  t34

0 0 0 1

The transformation T{Ok-->Okl is a function of the

following transformation parameters:

(C.4) "

translations: tx, ty, tz

rotations: rx, ry, rz

translations of rotations: trx, try, trz "

order of rotations: irx, iry, irz I

scale factors: sx, sy, sz

translations of scale factors: tsx, tsy, tsz

The transformation parameters are normally written in

matrix form. The translation matrix is:

_ (C.5)
1 0 0 -tx ( i .

0 1 0 -ty
T(tx,ty,tz) =

o 0 1 -tz

0 0 0 1 _,

the rotation matrices, in the irz, iry, and irx order of
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precedence are:

(C.6)

1 0 0 0

! .-- 0 cos(rx) sin(rx) 0(rx, ry, rz) -

U 0 -sin(rx) cos(rx) 0

0 0 0 1

F cos(ry) 0 -sin(ry) 0

0 1 0 0L"sin(ry) 0 cos(ry) 0

0 0 0 1

cos(rz) sin(rz) 0 0

-sin(rz) cos(rz) 0 0

0 0 1 0
eeI0 0 0 1 _

and the scale matrix is:
(C.7)

sx 0 0 0

0 sy 0 0
§(sx,sysz) =

0 0 sz 0

o 0 0 1

The complete transformation is then a concatination of

followscale transformations around point rl(tsx,tsy,tsz),

followed by z,y,x rotations around point Ti(trx,try,trz),

followed by translation to point h(tx,ty,tz):

(C.8)

T{Ok--Ok ,) , T(tx,ty,tz)

.T2(-trx,-try-trz) (rx,ry,rz)T(trx,try,trz)
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T(-tsx,-tsy.-tsz) 9(sxF , sz)*T(tsx, tsy, tsz)-

The inverse matrix T{Ok-+kF transforms from object

coordinate space O(xfyoz,w)k, to object coordinate space

O(2CIy~zow)k that is:

(C. 9)

T{OkOkF T{Oks--*Ok)

(b) surface-normal vector at point 'F(x,y,z) of algebraic

L representation f (x, y, z):

(C.10)

N df/dx df/dy df/dzJ

surface-normal vector at point Ti(u,v) of parametric rep-

resentati on (u, v):

(C.11)

I (u, v) u X (,v

= dx/du dy/du dz/du]3 x [dx/dv dy/dy dz/dv]

(c) normal surface curvature _q at point i(u,v) of parametric

representation 4(u,v) in the direction of the surface

curve ji(u(t),v(t)) is given by:

(C.12)

D162 + 2D 2  + D3 vL q = + 2E26 + E3v

where
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du (t) dv (t)
,and v

dt dt

D2 g N (u, V) u

D3 (u, v) vv

E= 9(uuv)U * '(u, V)

E2 - (ul v)~ u* uV

_ (d) intersection with a 3D parametric line represented by:

(C.13)

p y~~(t)12 12 Li

z(t) 131 132

w(t) 141 142-

or, for short,

(C.14)

The transformation of line t by T{Ok-4>Oks) is:

(C. 15)

=E T{Ok-40ks} I
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C.2 Planar Face

(C.16)

algebraic: f (x,y,z) =aox + aly + a2 z + a3 =0

Ea [aaa 2 a3] x

y

z

bounds: lists of edges and vertices [Figure

C.l (a)]

(C.17)

parametric: g (u,V) = bo b., b] u

bounds: limits on parameters U and v,

possibly combined with lists of edges and

vertices

(C.18)

*transf ormation: a0' a0

a2  a2

a3 '- a3

(the algebraic representation in equation

(C.16) is pre-multiplied by T{O-J>O1)
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Figure C.1 Surface representation: (a) planar face, (b)
sphere
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(C.19)

normal vector: ao = a0 a, a2 ]

or

-- [bo boy boz] x Eblx bly blz]

(C.20)

intersection: f(lx(t),ly(t),iz(t)) = 0

(obtained by substitution of parametric line

representation (C.13) into algebraic surface

representation (C.16), a linear equation

with up to one possible solution [Figure

C.l(a)]; the number of valid intersections

of a line from the point of intersection to OR

infinity in the plane with all edges of the

face then determines whether the inter-

section point is inside or outside the

planar face: if the numbeL is odd the point

is inside, otherwise it is outside; this

method allows a planar fact bounded by a

closed list of edges to contain any number

of not-intersecting holes or protrusions,

each similarly bounded by a closed list of

edges)
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C.3 Sphere

(C.21)

algebraic: f(x,y,z) = (x-xc)2+(y-yc) 2+(z-zc)2-r 2 = 0

bounds: none - the representation is self-

bounding
4.

(C.22)

parametric: x(u,v) =x + r cos(u) cos(v)

y(u,v) =YC + r cos(u) sin(v)

z(u,v) z + r sin(u)

bounds: -p.i/2 . .j./2
T.. 0 y ao x 2 Zi

J (C.23)

transformation: Xc' Xc

-•= T{O->O')z c Izc

w_ IWeW'_

(the center point F(xc,Yc,Zc,Wc) of the

sphere is pre-multiplied by T{O-->O'})

(C.24)

normal vector: = x-xc Y-YC Z-Zc3

or
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-sin(u) cos(v) -cos(u) sin(v)

N -sin(u) sin(v) X cos(u) cos(v)

cos (u) 0 "

(C.25)

intersection: f ( (t) l (t) 1 (t)) = 0

(obtained by substitution of parametric line

representation (C.13) into algebraic surface

representation (C.21), a quadric equation

with up to two possible solutions (Figure

C.l(b)]; if the sphere serves as a bounding

volume it is not necessary to compute the

exact intersection points, therefore only

the line to center-of-sphere distance is

computed and compared with the radius of the

sphere)
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CA4 Quadric Surface

(C.26)

algebraic: f (x,y,z) =aox 2 + aly2 + a2 z2

a3xy + a4xz + a5yz +

a6x + a7y + a 8 z + a9  0

-a 0  a3/2a 4 /2 a6
a3/2 a, a5/2 a7  y

a4/2 a5/2 a2  a8  z

a6  a7  a8  a9

E x Y z 1] E [x y z i t

bounds: boolean tree of quadric surfaces

[41]

(C.27)

parametric: g(u,v) =[ui 2 u FO 0 b3 V

- i] L:3l b: b2][ ]

U * 'Vt

bounds: limits on parameters u and v

(C.28)

transformation: T{' = 1)- (T(O-40OI-l)t
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(matrix Xof equation (C. 26) is pr e-

multiplied by the inverse of T{O-4O') and

post-multiplied by the transpose of the

* inverse of T{o->O')1(41])

(C.29)

normal vector: 2aox + a3y + a4z + a6]

N=2aly + a3x + a5z + a7

L 2a 2 z + a4x + a5 y + a8 J
or

(2b 1 3 u+b 22 v+b2 3  (2b 3 1 v+b 2 2 u+b 3 2
ii (2 1 3  ~ 2 2 v 2 3 )x X 2 3 1 v 2 2 u 3 2 )x -

N (2bl 3 u+b 2 2 v+b2 3 ) y (2b 3lv+ b2 2 u+ b32 ) y

(C.30)

intersection: f(lx(t)il y(t)ilZ(t)) =0

(obtained by substitution of parametric line

representation (C.13) into algebraic surface

* representation (C.26),, a quadric equation

with up to two possible solutions (Figure

C.2 (a)])
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p~araboloid

paeplane plane
(u) (aunc) (auix)

(a)

0.0 U _'e 1.0
0.0 -LV 1.0

h(0,0) v 0

(b)

Figure C.2 Surface representation: (a) quadric surface,
(b) bicubic patch
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C.5 Bicubic Patch

algebraic: none

(C.31)

parametric: g(u,v) - [3 u2 u 1 b11  b1 2 b1 3 b1 4  v 3

b21 b22 b23 b24  v2

b 3 1 b32 b33 b34  v

b4 1 b 4 2 b4 3 b44  1

5 UVt

bounds: 0 1 _u, v < 1 in relative parameter

coordinates

(C.32)

transformation: gx(u,v) = T{O--O'} gx(u,v)

gy (uV)'= T{O-O'} g y (u,v)

gz(UV) = T{O-+O'} gz(u,v)

(matrix B of each component in equation

(C.31) is pre-multiplied by T{O-->O'1)

(C.33)

normal vector: N = (u,v) X g(u,v)
u- v

(C.34)

intersection: g(u,v) - 1(t) = 0

or when written as three simultaneous cubic

equations: .a
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-! (C. 35)

gx (u,v) - l(t) = 0
g(u,V) - ly(t) = 0

gz(uv) - l Z ( t) = 0

This system of non-linear equations is

numerically solved by a modified Newton-

Raphson method with tests for equation con-

vergence to the nearest intersection solu-

tion, and constraints, limiting the parame-

ters to within the patch and the bounding

volume [Figure C.2(b)]. Intersection of the

line with a planar approximation of the

patch or its subpatch provides the initial

estimate of the three unknowns.

The solution proceeds as follows; let:

(C. 36)

E(tu,v) - gx(uv) - lx(t)

F(t,u,v) - gy(u,v) - l(t)

G(t,u,v) - gz(u,v) - lz(t)

Then by first-order Taylor expansion of the

. system of equations in (C.36) we can incre-

ment;.1y solve for the parameters t, u, and

eqq .!:
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(C. 37)

E dE/du dE/dv

F dF/du dF/dv

G dG/du dG/dv
tn11 tn =t t -__________

- I D(t,u,v)

(C.38)

dE/dt E dE/dv

dF/dt F dF/dv

dG/dt G dG/dv

= u~ du =u~ -D(t,u,v) -

(C.39)

dE/dt dE/du E

dF/dt. dF/du F

dG/dt dG/du G
vn+l =vn -dv =v -Dtu)I

where jD(t,u,v)l is the determinant of the

Jacobian matrix defined by:

(C.40)

rdE/dt dE/du dE/dv 1
D(t,u,v) = dF/dt dF/du dF/dv

L dG/dt dG/du dG/dv-

* An outline of the algorithm follows:

(C.41) -

* ~Procedure csystem (t, uv);
begin
[test magnitudes of the three equations]
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i N

while I E (t, u, v) I > eps I I
I F(t,u,v) I > eps1 , I.• I G (t, u, v) I> eps I do

4 bein
[test for vanishing determinant of
Jacobian matrix]
dd := determinant (D (t, u, v));

M if Iddl < eps2 ±hen return (fail);
dt := [from equation (C.37)];
du := [from equation (C.38)];
dv := [from equation (C.39)];
[test boundary condition, if outside
clip to boundary values, if previously
on boundary then fail];.,if (t-dr > tmax) td < tmin) 1

(u-du > umax) I (u-du < umin) I
(v-dy > vmax) I (v-dr < vmin) ten

i ( (t = tmin) 1 (t = tmax) 1
(u = umin ) I (u = Umax)
( =VVmin) I (v =vma ) then.

.cptorn(fail);
-ese clip to boundary values;

[test convergence to the nearest
solution, if increments become too
small exit with failure]
while

I E (t-dt, u-du, v-dv) I > I E (t, u, v) I I
I F(t-dt, u-du,v-dv) I>IF(t,u,v) I I
IG(t-dt,u-du,v-dv) I>IG(t,u,v) I

ein
dt :=dt /2;
du : du / 2;
dv :- dv / 2;
[test if at local minimum or
maxim um] - 2
j- dt2+du2+dv < eps 3i.' then return (fail) ;

' en d ;

[compute new increment of the solu-
tion]
t = t - dt;
u : u - du;
v := v - dv;
end;

return (t, u, v);
mid;
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APPENDIX D

SOFTWARE COMMANDS

This appendix contains descriptions of the available

commands in the four software command processors, SURE,

SUED, ALIGN, and STRAW, described in Chapter 5. The syntax

of the commands is given by:

(D.1)

COMMAND: <parameter.list>;

where

<parameterlist> ::= <parameterlist> <operator>

<parameter> I <parameter>

<parameter> ::= <identifier> I <constant> I

{keyword)

<operator> =

I ';l

Here, <identifier> refers to the name of data in a proc-

essor's data base, or to the name of a directory or a file;

<constant> refers to a numerical constant in either integer

or floating-point format; and (keyword) contains a

command's keyword.

D.1 Processor SURE

TAPEIN: <directory-name>, <8-bitfile_name>,
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<16-bit_file_name>;

reads a digitized image from the current position of

a magnetic tape and creates an 8 bit/pixel and,

optionally, a 16 bit/pixel image file.R0
HISTOGRAM: <directoryname>, <file_name>;

computes a histogram of a 16 bit/pixel, 8 bit/pixel

or I bit/pixel (binary) image.

CONVERT: <directoryname>, <in_filename>, <out_file_name>;

converts either a 16 bit/pixel image to an 8

bit/pixel image, or an 8 bit/pixel image to a binary

image.

WINDOW: <directoryname>, <infile_name>, <outfile_name>;

m creates a window image from an input image.

FFT2D: <directoryname>, <infile_name>, <outfile_name>;

computes the 2D fast Fourier transform of an 8 or 16

* bit/pixel image.

FILTER: <filter-parameters>;

filters an image in the frequency domain.

IFFT2D: <directoryname>, <infile_name>, <outfile_name>;

.* computes the 2D inverse fast Fourier transform and

generates an 8 or 16 bit/pixel image.

MFFT2D: <directoryname>, <infile_name>, <outfile_name>;

converts a 2D Fourier transform of an image into a 8

bit/pixel image of logarithmically scaled magnitudes

of the Fourier transform.

CLEAN: <directory-name>, <infilename>, <outfile_name>;

227

;: ,. -: .: . : .. .. .. .- .- .. . :- .. .. :' : : . : - :. .* . . . . - . : ' _ . . .. . :. .



smooths either an 8 bit/pixel or a binary image with

a 3 x 3 or a 5 x 5 pixel operator in the spatial

domain.

PLOT: <directory-name>, <infilename>;

plots an 8 bit/pixel or a binary image on the

electrostatic printer-plotter. The 8 bit/pixel im-

age is dithered.

COPY: <directory name>, <in-file_name>;

copies a window of an 8 bit/pixel or a binary image

to the frame buffer of the raster terminal. -

LOAD: <identifier>, <directory_name>, <file_name>;

loads an image or partially processed data into

SURE.

EXTRACT: <identifier>;

extracts the image projections of the corners of

camera calibration marks from a binary image.

MATCHMARKS: <identifier>;

matches the 2D image projections of the corners of

camera calibration marks with their 3D coordinates.

TRANSFORMATION: <identifier>;

computes the image transformation matrix by matching

a 3D model of the calibration marks with their 2D

projections in the specified image. ml
THIN: <identifier>;

iteratively thins a binary image until a line pixel k I

has at most only two neighbors.
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RECONSTRUCT: <imagel>, <image_2>, ....

reconstructs a 3D surface representation from infor- j
mation obtained from two or more images.

SAVE: <identifier>, <directoryname>, <file_name>;
U

saves an image or partially processed data from SURE

to a file.

LIST: {markslgridlnodeslcurves};

* . lists contents of the specified data.

DISPLAY: <identifier>;

displays the specified data on the vector-drawing

graphics terminal.

g D.2 Processor SUED

SPHERE: <identifier>, <color>, <x>, <y>, <z>, <radius>;

defines the name, color, location and size of a

" "sphere.

S.VERTEX: <identifier>, <x>, <y>, <z>;

defines a 3D point that can be used either as a

i ,-rtex point in planar faces or as a control point

* .in bicubic patches.

PLANE: <identifier>, <color>, <vertexlist> & <vertexlist>

defines a planar face that is bounded by a list of

L vertices specifing outer edges, and, optionally, one

or more lists of vertices specifing inner edges

229

*%** -. ... 2 . * - . * : ; .*



(holes). A bounding volume is cast around the

planar face.

POLYHEDRON: <identifier>, <plane>, <plane> ....

defines a set of planar faces which form a

polyhedron-like object (holes in faces are allowed

and the object does not have to be closed). A

bounding volume is cast around the object. p

PATCH: <identifier>, <color>, <listofcontrol_points>,

<r_min>;

defines a bicubic patch that is fitted into 16 3D "

control points which are defined by the VERTEX

command. Such a patch will usually have at most CO

continuity with any adjacent patches. - p

QUADRICCOEFFS: <identifier>, <color>, (actuallauxiliary},

<a0 >, <a,>, .... <a9 >;

defines the name, color, type and algebraic repre-

sentation of a quadric surface. The type of the

surface may be auxiliary - used only as a bounding

surface - or normal.

QUADRIC_BOUNDS: <identifier>, <boundingtree>;

defines a single level AND-OR logical tree of

bounding quadric surfaces.

COLOR: <identifier>, <rambient>, <g.ambient>, <b.ambient>,

<ambientcoeff>, <diffuse_coeff>,

<reflection_coeff>, <transmissioncoeff>,

<refraction_coeff>, <specular-coeff>,
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<glossinesscoeff>;

defines the ambient red, green and blue intensities,

and the ambient, diffuse, reflection, transmission,

refraction, specular and glossiness coefficients of

--a color.

LOAD: <identifier>, <directoryname>, <file_name>;

loads a surface representation from a file into the

* . data base of the processor.

SAVE: <identifier>, <directoryname>, <filename>;

stores a surface representation into a file from the

data base of the processor.

SYMMETRY: <identifier>, <from-x>, <fromy>, <fromz>,

<tox>, <toy>, <to.z>, <p_increment>,

<c_increment>;-

attempts to convert a sheet of bicubic patches into

a generalized cylinder-like shape.

QUADTREE: <identifier-quadtree>, <identifierpatches>;

converts a sequential list of bicubic patches into a

structured quadtree of the patches with bounding

volumes and normal vectors.

SET_DISPLAY: {initialize), {blinklnoblink}, {fastinormal},

{solidldottedldashed}, {camerastandlmaximum};

defines the display mode of the subsequently dis-

played data.

DISPLAY: {camerastandnodespatcheslquadtreeslcylinders};

displays the specified part of the currently defined
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data.

STATUSDISPLAY;

lists the current status of the display device.

LIST: {nodesipatcheslquadtreeslcylinders}; _

lists the specified part of the currently defined

data.

VERIFY: {nodesipatcheslquadtreeslcylinders};

verifies the integrity of the specified data.

MODIFY: <node>, <x>, <y>, <z>, <pointer_list>;

adds a new node or modifies the contents of an

existing node of a parametric sheet.

SMOOTH: <sheet>, <u_order>, <vorder>;

smooths a sheet of bicubic patches with an orthogo-

nal bivariate polynomial of the specified orders.

TRANSFORM: <identifier>, <tx>, <ty>, <tz>, <rx>, <ry>, .... ;

creates a 3D transformation matrix composed from

translations, rotations in arbitrary order around an

arbitrary point, and scale changes around an

arbitrary point.

RELATION: <identifier>., <parameters>;

creates a relational-node entry.

BOUND: <identifier>, <parameters>;

creates a boundary-volume entry.

INSERT: <identifier>, <node>, <transform>;

inserts a graph node into the graph data structure.

INITIALIZE; STATUS; HELP; EXIT;
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are the obvious and self-explanatory utility

commands.

D.3 Processor ALIGN
U

LOADSURFACE: <identifier>, <directory-name>, <filename>;

loads the first or the second structured surface

into the data base.

SETTRANSFORM: {txlnotx}, <max_tx>, <mintx>, ....

_ defines transformation parameters which can be

modified during the search process and sets limits

of their ranges.

MODE: {debuglnobug), (displaylnoplay};

enables and disables debug and display modes of the

search process.

p. MATCH;

aligns the two currently defined surfaces into a

common object coordinate system.

MERGE;

merges the two aligned surfaces, defined in the data

base, into a common parameter coordinate space.

SAVESURFACE: <directoryname>, <file_name>;

* .saves the aligned and merged surfaces into a file.

LOAD-SEARCH: <directoryname>, <filename>;

Wu loads the search data base generated by the ALIGN

command from a file.
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SAVESEARCH: <directory-name>, <filename>;

saves the search data base to a file.

TRACE: <searchnode>;

traverses the search tree of the alignment process

to the specified node and displays the surface

transformation of each node in the path.

TRACEGOAL;

traverses the search tree of the alignment process

to the goal node and displays the surface transfor-

mation of each node in the path. -

REPLAY;

repeats a previously executed alignment process by

traversing the nodes of its search tree in the order

in which they were generated.

INITALIZE; STATUS; HELP; EXIT;

are again the obvious, indispensable, and self- . -

explanatory utility commands.

D.4 Processor STRAW

CAMERA: <x>, <y>, <z>, <rotx>, <roty>, <rotz>,

<focallength>, {perspective lorthographic); It

defines the position of the camera model (center of

projection) in the object coordinate system, rota-

tions of the optical axis of the camera model, the

focal length of its lens, and the type of pro-
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hjection. In the orthographic projection the focal

length only scales the rays' parameter; all rays

L are parallel to each other and perpendicular to the

image plane.

FRAME: <r_size>, <s_size>, <rpixels>, <slines>,

' .<ipixel>, <f.pixel>, <iline>, <fline>;

defines the size of the image frame in object coor-

"" dinate system units, in pixel units, and defines

window in the image to be actually computed. The

size of the image plane and the focal length of the

camera model together define the viewing pyramid.

SAMPLE: <levels>, <subdivisioncoeffs>;

.p specifies a maximum number of levels that a pixel

can be subdivided to perform image antialiasing. A

subdivision coefficient for each level specifies the

*N amount by which the average intensity of a pixel

area can differ from any one of its samples before

the area is subdivided.

SHADE: <maxray>, <minhide>, <minshadow>, <max_reflect>,

<maxtransmit>;

defines the maximum number of nodes in the shading

tree, the minimum distances that a valid ray inter-

section must be from the origin of a ray to prevent

false ray bounces and false shadows caused by

round-off errors, and linear intensity attenuation

for reflected and refracted rays.
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IMAGE_OUTPUT: <directoryname>, <filename>;

creates a file where the generated raster image will

be written by the EXECUTE command.

POINT_OUTPUT: <directoryname>, <filename>;

creates a file where the image sample points will be

written by the EXECUTE command. This file can be

later converted by a post-processor into a raster

image. Post-processor FOCUS generates images which

are focused and have a depth of field; post-proc-

essor BLUR adds motion blur.

PAINT_TABLE: <identifier>, [<fromx>, <fromy>, <fromz>,

<fromred>, <from_green>, <from-blue>,

<to_x>, <toy>, <toz>,

<to_red>, <togreen>, <to_blue>];

defines a paint table which contains a sequence of

3D vectors specified by their initial and final

points and corresponding intensity values. The

intensity values are linearly interpolated along the

direction of the vector and used as ambient

intensity to be painted on a surface.

INTENSITY_MAP: <identifier>, <directoryname>, <file_name>;

defines a color image which is to be used as an

ambient intensity map of a color.

TEXTURE_MAP: <identifier>, <directory_name>, <file_name>;

defines a monochrome image which is to be used as a

texture function of a color.
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COLOR: <identifier>, <colorcoefficients> & <image map>,

<image-map-coefficients> & <texturemap>,

<texture-mapcoefficients> & <paint table>;

defines the color properties of a surface element. .

This command is identical to the COLOR command in

SUED but the source of ambient intensity can also be

a color image or a paint table, and a texture func-

tion defined in a monochrome image may also be

added.

LIGHT: <identifier>, <x>, <y>, <z>, <red>, <green>, <blue>,

{shadow inoshadow}, <contrast>;

defines the name, position, color and intensity of a

point-light source which illuminates the scene.

Optionally, shadows cast by the light source can be

computed with a specified contrast.

* LOAD: <directoryname>, <file_name>;

loads a structured surface file generated by the

SUED processor.

PATCH-TREES: <identifier>, <color>, <directoryname>,

<f ile_name>;

loads a file of structured bicubic-patch quadtrees
bfrom a file.

SPHERE: <parameterlist>;

VERTEX: <parameterlist>;

PLANE: <parameterlist>;

POLYHEDRON: <parameter_list>;
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PATCH: <parameter_list>;L

QUADRICCOEFFS: <parameter_list>;

QUADRIC_BOUNDS: <parameterlist>;

enter unstructured surface elements as in the SUED

processor.

STATUS: <what>;

lists the current status and contents of the

specified data in the processor.

listed during image generation.

INITIALIZE;

initializes the STRAW data base.2

EXECUTE;

computes a synthetic image and writes it to the

currently opened output image and sample files. InIn

an animated sequence any part of the data base can

be modified between successive EXECUTE commands.

EXIT;

-p

terminates execution of the processor.

STEREO: (leftiright), <vewx>, <view-y>, <view..z>, (angle>;

replaces the current camera parameters by those of a

complementary stereo view computed from the

specified view point and angle of separation.

INPUT: <file <name>;

directs the command processor to read subsequent
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commands from the specified file.

HELP;

lists the currently implemented commands and their

syntax.
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surface descriptions in a common object space. This procedure searches for
a 3D rigid transformation of the surface descriptions which minmizes their
shape difference. Once the surface descriptions are in the same object space,
they are also merged into a common parameter space. This match-and-merge
process is iteratively repeated for pairs of surface descriptions until a
completer model of the object is assembled.
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